Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices

Isa Jara, Ramiro FernandoIcon ; Pérez Sosa, Camilo JoséIcon ; Macote Yparraguirre, Erick LeonelIcon ; Revollo Sarmiento, Natalia VeronicaIcon ; Lerner, BetianaIcon ; Miriuka, Santiago GabrielIcon ; Delrieux, Claudio AugustoIcon ; Pérez, Maximiliano; Mertelsmann, Roland
Fecha de publicación: 14/10/2022
Editorial: I S & T - Soc Imaging Science Technology
Revista: Journal Of Imaging Science And Technology
ISSN: 1062-3701
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Fluidos y Plasma

Resumen

Nowadays, image analysis has a relevant role in most scientific and research areas. This process is used to extract and understand information from images to obtain a model, knowledge, and rules in the decision process. In the case of biological areas, images are acquired to describe the behavior of a biological agent in time such as cells using a mathematical and computational approach to generate a system with automatic control. In this paper, MCF7 cells are used to model their growth and death when they have been injected with a drug. These mammalian cells allow understanding of behavior, gene expression, and drug resistance to breast cancer. For this, an automatic segmentation method called GEMA is presented to analyze the apoptosis and confluence stages of culture by measuring the increase or decrease of the image area occupied by cells in microfluidic devices. In vitro, the biological experiments can be analyzed through a sequence of images taken at specific intervals of time. To automate the image segmentation, the proposed algorithm is based on a Gabor filter, a coefficient of variation (CV), and linear regression. This allows the processing of images in real time during the evolution of biological experiments. Moreover, GEMA has been compared with another three representative methods such as gold standard (manual segmentation), morphological gradient, and a semi-automatic algorithm using FIJI. The experiments show promising results, due to the proposed algorithm achieving an accuracy above 90% and a lower computation time because it requires on average 1 s to process each image. This makes it suitable for image-based real-time automatization of biological lab-on-a-chip experiments.
Palabras clave: APOPTOSIS PROCESS , BIOLOGICAL IMAGE SEGMENTATION , LINEAR REGRESSION , REAL-TIME ANALYSIS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.579Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/205127
DOI: https://doi.org/10.3390/jimaging8100281
URL: https://www.mdpi.com/2313-433X/8/10/281
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(IIIE)
Articulos de INST.DE INVEST.EN ING.ELECTRICA "A.DESAGES"
Citación
Isa Jara, Ramiro Fernando; Pérez Sosa, Camilo José; Macote Yparraguirre, Erick Leonel; Revollo Sarmiento, Natalia Veronica; Lerner, Betiana; et al.; GEMA—An Automatic Segmentation Method for Real-Time Analysis of Mammalian Cell Growth in Microfluidic Devices; I S & T - Soc Imaging Science Technology; Journal Of Imaging Science And Technology; 8; 10; 14-10-2022; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES