Mostrar el registro sencillo del ítem

dc.contributor.author
Salort, Ariel Martin  
dc.date.available
2023-07-21T13:58:45Z  
dc.date.issued
2022-03  
dc.identifier.citation
Salort, Ariel Martin; Lower bounds for Orlicz eigenvalues; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 3; 3-2022; 1415-1434  
dc.identifier.issn
1078-0947  
dc.identifier.uri
http://hdl.handle.net/11336/204745  
dc.description.abstract
In this article we consider the following weighted nonlinear eigenvalue problem for the g-Laplacian {equation presented} with Dirichlet boundary conditions. Here w is a suitable weight and g = G' and h = H' are appropriated Young functions satisfying the so called Δ' condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of G, H, w and the normalization μ of the corresponding eigenfunctions. We introduce some new strategies to obtain results that generalize several inequalities from the literature of p-Laplacian type eigenvalues.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Mathematical Sciences  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EIGENVALUE BOUNDS  
dc.subject
LYAPUNOV INEQUALITY  
dc.subject
ORLICZ SPACES  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Lower bounds for Orlicz eigenvalues  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-03T16:27:56Z  
dc.identifier.eissn
1553-5231  
dc.journal.volume
42  
dc.journal.number
3  
dc.journal.pagination
1415-1434  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Springfield  
dc.description.fil
Fil: Salort, Ariel Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.journal.title
Discrete And Continuous Dynamical Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org/article/doi/10.3934/dcds.2021158  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3934/dcds.2021158  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2104.07562v1