Artículo
Lower bounds for Orlicz eigenvalues
Fecha de publicación:
03/2022
Editorial:
American Institute of Mathematical Sciences
Revista:
Discrete And Continuous Dynamical Systems
ISSN:
1078-0947
e-ISSN:
1553-5231
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we consider the following weighted nonlinear eigenvalue problem for the g-Laplacian {equation presented} with Dirichlet boundary conditions. Here w is a suitable weight and g = G' and h = H' are appropriated Young functions satisfying the so called Δ' condition, which includes for instance logarithmic perturbation of powers and different power behaviors near zero and infinity. We prove several properties on its spectrum, being our main goal to obtain lower bounds of eigenvalues in terms of G, H, w and the normalization μ of the corresponding eigenfunctions. We introduce some new strategies to obtain results that generalize several inequalities from the literature of p-Laplacian type eigenvalues.
Palabras clave:
EIGENVALUE BOUNDS
,
LYAPUNOV INEQUALITY
,
ORLICZ SPACES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos de INSTITUTO DE CALCULO
Citación
Salort, Ariel Martin; Lower bounds for Orlicz eigenvalues; American Institute of Mathematical Sciences; Discrete And Continuous Dynamical Systems; 42; 3; 3-2022; 1415-1434
Compartir
Altmétricas