Artículo
Subgraph Network Random Effects Error Components Models: Specification and Testing
Fecha de publicación:
01/2022
Editorial:
De Gruyter
Revista:
Journal of Econometric Methods
e-ISSN:
2156-6674
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper develops a subgraph random effects error components model for network data linear regression where the unit of observation is the node. In particular, it allows for link and triangle specific components, which serve as a basal model for modeling network effects. It then evaluates the potential effects of ignoring network effects in the estimation of the coefficients' variance-covariance matrix. It also proposes consistent estimators of the variance components using quadratic forms and Lagrange Multiplier tests for evaluating the appropriate model of random components in networks. Monte Carlo simulations show that the tests have good performance in finite samples. It applies the proposed tests to the Call interbank market in Argentina.
Palabras clave:
CLUSTERS
,
MOULTON FACTOR
,
NETWORKS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIEP)
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Articulos de INST. INTER. DE ECONOMIA POLITICA DE BUENOS AIRES
Citación
Montes Rojas, Gabriel Victorio; Subgraph Network Random Effects Error Components Models: Specification and Testing; De Gruyter; Journal of Econometric Methods; 11; 1; 1-2022; 17-34
Compartir
Altmétricas