Mostrar el registro sencillo del ítem
dc.contributor.author
Bre, Facundo
dc.contributor.author
Gimenez, Juan Marcelo
dc.date.available
2023-07-19T12:43:11Z
dc.date.issued
2022-08
dc.identifier.citation
Bre, Facundo; Gimenez, Juan Marcelo; A cloud-based platform to predict wind pressure coefficients on buildings; Springer; Building Simulation; 15; 8; 8-2022; 1507-1525
dc.identifier.issn
1996-8744
dc.identifier.uri
http://hdl.handle.net/11336/204414
dc.description.abstract
Natural ventilation (NV) is a key passive strategy to design energy-efficient buildings and improve indoor air quality. Therefore, accurate modeling of the NV effects is a basic requirement to include this technique during the building design process. However, there is an important lack of wind pressure coefficients (Cp) data, essential input parameters for NV models. Besides this, there are no simple but still reliable tools to predict Cp data on buildings with arbitrary shapes and surrounding conditions, which means a significant limitation to NV modeling in real applications. For this reason, the present contribution proposes a novel cloud-based platform to predict wind pressure coefficients on buildings. The platform comprises a set of tools for performing fully unattended computational fluid dynamics (CFD) simulations of the atmospheric boundary layer and getting reliable Cp data for actual scenarios. CFD-expert decisions throughout the entire workflow are implemented to automatize the generation of the computational domain, the meshing procedure, the solution stage, and the post-processing of the results. To evaluate the performance of the platform, an exhaustive validation against wind tunnel experimental data is carried out for a wide range of case studies. These include buildings with openings, balconies, irregular floor-plans, and surrounding urban environments. The Cp results are in close agreement with experimental data, reducing 60%–77% the prediction error on the openings regarding the EnergyPlus software. The platform introduced shows being a reliable and practical Cp data source for NV modeling in real building design scenarios.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
AIRFLOW NETWORK MODEL
dc.subject
BUILDING SIMULATION
dc.subject
COMPUTATIONAL FLUID DYNAMICS
dc.subject
ENERGYPLUS
dc.subject
NATURAL VENTILATION
dc.subject
WIND PRESSURE COEFFICIENT
dc.subject.classification
Ingeniería Civil
dc.subject.classification
Ingeniería Civil
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Mecánica Aplicada
dc.subject.classification
Ingeniería Mecánica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Hardware y Arquitectura de Computadoras
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
A cloud-based platform to predict wind pressure coefficients on buildings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-07T21:02:26Z
dc.journal.volume
15
dc.journal.number
8
dc.journal.pagination
1507-1525
dc.journal.pais
Alemania
dc.journal.ciudad
Berlín
dc.description.fil
Fil: Bre, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.description.fil
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
dc.journal.title
Building Simulation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12273-021-0881-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12273-021-0881-9
Archivos asociados