Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A cloud-based platform to predict wind pressure coefficients on buildings

Bre, FacundoIcon ; Gimenez, Juan MarceloIcon
Fecha de publicación: 08/2022
Editorial: Springer
Revista: Building Simulation
ISSN: 1996-8744
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Civil; Mecánica Aplicada; Hardware y Arquitectura de Computadoras

Resumen

Natural ventilation (NV) is a key passive strategy to design energy-efficient buildings and improve indoor air quality. Therefore, accurate modeling of the NV effects is a basic requirement to include this technique during the building design process. However, there is an important lack of wind pressure coefficients (Cp) data, essential input parameters for NV models. Besides this, there are no simple but still reliable tools to predict Cp data on buildings with arbitrary shapes and surrounding conditions, which means a significant limitation to NV modeling in real applications. For this reason, the present contribution proposes a novel cloud-based platform to predict wind pressure coefficients on buildings. The platform comprises a set of tools for performing fully unattended computational fluid dynamics (CFD) simulations of the atmospheric boundary layer and getting reliable Cp data for actual scenarios. CFD-expert decisions throughout the entire workflow are implemented to automatize the generation of the computational domain, the meshing procedure, the solution stage, and the post-processing of the results. To evaluate the performance of the platform, an exhaustive validation against wind tunnel experimental data is carried out for a wide range of case studies. These include buildings with openings, balconies, irregular floor-plans, and surrounding urban environments. The Cp results are in close agreement with experimental data, reducing 60%–77% the prediction error on the openings regarding the EnergyPlus software. The platform introduced shows being a reliable and practical Cp data source for NV modeling in real building design scenarios.
Palabras clave: AIRFLOW NETWORK MODEL , BUILDING SIMULATION , COMPUTATIONAL FLUID DYNAMICS , ENERGYPLUS , NATURAL VENTILATION , WIND PRESSURE COEFFICIENT
Ver el registro completo
 
Archivos asociados
Tamaño: 2.582Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/204414
URL: https://link.springer.com/article/10.1007/s12273-021-0881-9
DOI: http://dx.doi.org/10.1007/s12273-021-0881-9
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Bre, Facundo; Gimenez, Juan Marcelo; A cloud-based platform to predict wind pressure coefficients on buildings; Springer; Building Simulation; 15; 8; 8-2022; 1507-1525
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES