Mostrar el registro sencillo del ítem

dc.contributor.author
Dematties, Dario Jesus  
dc.contributor.author
Rizzi, Silvio  
dc.contributor.author
Thiruvathukal, George  
dc.contributor.author
Wainselboim, Alejandro Javier  
dc.date.available
2023-07-13T13:21:46Z  
dc.date.issued
2022-08  
dc.identifier.citation
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Towards an active foveated approach to computer vision; Instituto Politecnico Nacional; Computación y Sistemas; 26; 4; 8-2022; 1635-1647  
dc.identifier.issn
2007-9737  
dc.identifier.uri
http://hdl.handle.net/11336/203696  
dc.description.abstract
In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Instituto Politecnico Nacional  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/  
dc.subject
FOVEATED COMPUTER VISION  
dc.subject
GENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS)  
dc.subject
REINFORCEMENT LEARNING  
dc.subject
SACCADIC BEHAVIOR  
dc.subject
SELF-SUPERVISED LEARNING  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Towards an active foveated approach to computer vision  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T12:40:20Z  
dc.identifier.eissn
1405-5546  
dc.journal.volume
26  
dc.journal.number
4  
dc.journal.pagination
1635-1647  
dc.journal.pais
México  
dc.journal.ciudad
Ciudad de México  
dc.description.fil
Fil: Dematties, Dario Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Northwestern University; Estados Unidos  
dc.description.fil
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos  
dc.description.fil
Fil: Thiruvathukal, George. Loyola University; Estados Unidos  
dc.description.fil
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina  
dc.journal.title
Computación y Sistemas  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/4436  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.scielo.org.mx/scielo.php?pid=S1405-55462022000401635&script=sci_arttext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.13053/cys-26-4-4436