Mostrar el registro sencillo del ítem
dc.contributor.author
Dematties, Dario Jesus
dc.contributor.author
Rizzi, Silvio
dc.contributor.author
Thiruvathukal, George
dc.contributor.author
Wainselboim, Alejandro Javier
dc.date.available
2023-07-13T13:21:46Z
dc.date.issued
2022-08
dc.identifier.citation
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Towards an active foveated approach to computer vision; Instituto Politecnico Nacional; Computación y Sistemas; 26; 4; 8-2022; 1635-1647
dc.identifier.issn
2007-9737
dc.identifier.uri
http://hdl.handle.net/11336/203696
dc.description.abstract
In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Instituto Politecnico Nacional
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.subject
FOVEATED COMPUTER VISION
dc.subject
GENERAL-PURPOSE GRAPHICS PROCESSING UNITS (GPGPUS)
dc.subject
REINFORCEMENT LEARNING
dc.subject
SACCADIC BEHAVIOR
dc.subject
SELF-SUPERVISED LEARNING
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Towards an active foveated approach to computer vision
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-06T12:40:20Z
dc.identifier.eissn
1405-5546
dc.journal.volume
26
dc.journal.number
4
dc.journal.pagination
1635-1647
dc.journal.pais
México
dc.journal.ciudad
Ciudad de México
dc.description.fil
Fil: Dematties, Dario Jesus. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina. Northwestern University; Estados Unidos
dc.description.fil
Fil: Rizzi, Silvio. Argonne National Laboratory; Estados Unidos
dc.description.fil
Fil: Thiruvathukal, George. Loyola University; Estados Unidos
dc.description.fil
Fil: Wainselboim, Alejandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Ciencias Humanas, Sociales y Ambientales; Argentina
dc.journal.title
Computación y Sistemas
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/4436
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.scielo.org.mx/scielo.php?pid=S1405-55462022000401635&script=sci_arttext
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.13053/cys-26-4-4436
Archivos asociados