Artículo
Towards an active foveated approach to computer vision
Fecha de publicación:
08/2022
Editorial:
Instituto Politecnico Nacional
Revista:
Computación y Sistemas
ISSN:
2007-9737
e-ISSN:
1405-5546
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, a series of experimental methods are presented explaining a new approach towards active foveated Computer Vision (CV). This is a collaborative effort between researchers at CONICET Mendoza Technological Scientific Center from Argentina, Argonne National Laboratory (ANL), and Loyola University Chicago from the US. The aim is to advance new CV approaches more in line with those found in biological agents in order to bring novel solutions to the main problems faced by current CV applications. Basically this work enhances Self-supervised (SS) learning, incorporating foveated vision plus saccadic behavior in order to improve training and computational efficiency without reducing performance significantly. This paper includes a compendium of methods’ explanations, and since this is a work that is currently in progress, only preliminary results are provided. We also make our code fully available.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INCIHUSA)
Articulos de INST. DE CS. HUMANAS, SOC. Y AMBIENTALES
Articulos de INST. DE CS. HUMANAS, SOC. Y AMBIENTALES
Citación
Dematties, Dario Jesus; Rizzi, Silvio; Thiruvathukal, George; Wainselboim, Alejandro Javier; Towards an active foveated approach to computer vision; Instituto Politecnico Nacional; Computación y Sistemas; 26; 4; 8-2022; 1635-1647
Compartir
Altmétricas