Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Could QSOR Modelling and Machine Learning Techniques Be Useful to Predict Wine Aroma?

Cardoso Schwindt, Virginia AraceliIcon ; Coletto, Mauricio MiguelIcon ; Diaz, Monica FatimaIcon ; Ponzoni, IgnacioIcon
Fecha de publicación: 06/2022
Editorial: Springer
Revista: Food and Bioprocess Technology
ISSN: 1935-5130
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química; Ciencias de la Información y Bioinformática

Resumen

Food informatics is having an increasing impact on the food industry,improving the quality of end products, as well as the efficiency of manufacturing processes. In the case of winemaking, a particular application of interest for food informatics is the sensory analysis of wines. This problem can benefit from the strong development that machine learninghas achieved in recent decades. However, these data-driven techniques require accurate and sufficient information to generate models capable of predicting the sensory profile of wines. A review of the sensory analysis and volatile composition of wines is presented in this work,along with significant studies on the use of machine learning models to predict wine related characteristics such as the antioxidant activity of polyphenols of wine and aroma compounds, among others. In this sense, data from a sensory panel and analytical technology were gathered.This literature review reveals the lack of a homogeneous and sufficiently large database of sensory analysis related to the volatile composition of wines to develop machine learning models. However, among artificial intelligence approaches, the application of quantitative structure-odorrelationship (QSOR) models is currently gaining importance. Recent studies show that it would be possible to predict quantitatively the sensory analysis of wines by QSOR models, using general volatile composition information.Therefore, the purpose of this review is to identify key aspects and guidelines for the development of this area.
Palabras clave: MACHINE LEARNING , QSOR , VOLATILE COMPOSITION , WINE AROMA
Ver el registro completo
 
Archivos asociados
Tamaño: 1013.Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/203278
DOI: http://dx.doi.org/10.1007/s11947-022-02836-x
Colecciones
Articulos (ICIC)
Articulos de INSTITUTO DE CS. E INGENIERIA DE LA COMPUTACION
Articulos(PLAPIQUI)
Articulos de PLANTA PILOTO DE INGENIERIA QUIMICA (I)
Citación
Cardoso Schwindt, Virginia Araceli; Coletto, Mauricio Miguel; Diaz, Monica Fatima; Ponzoni, Ignacio; Could QSOR Modelling and Machine Learning Techniques Be Useful to Predict Wine Aroma?; Springer; Food and Bioprocess Technology; 16; 1; 6-2022; 24-42
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES