Mostrar el registro sencillo del ítem
dc.contributor.author
Pacetti, Ariel Martín

dc.contributor.author
Villagra Torcomian, Lucas

dc.date.available
2023-07-11T15:23:30Z
dc.date.issued
2022-11
dc.identifier.citation
Pacetti, Ariel Martín; Villagra Torcomian, Lucas; Q-Curves, Hecke characters and some Diophantine equations; American Mathematical Society; Mathematics of Computation; 91; 338; 11-2022; 2817-2865
dc.identifier.issn
0025-5718
dc.identifier.uri
http://hdl.handle.net/11336/203274
dc.description.abstract
In this article we study the equations x4 + dy2 = zp and x2 + dy6 = zp for positive square-free values of d. A Frey curve over Q( √ −d) is attached to each primitive solution, which happens to be a Q-curve. Our main result is the construction of a Hecke character χ satisfying that the Frey elliptic curve representation twisted by χ extends to GalQ, therefore (by Serre’s conjectures) corresponds to a newform in S2(Γ0(n), ε) for explicit values of n and ε. Following some well known results and elimination techniques (together with some improvements) our result provides a systematic procedure to study solutions of the above equations and allows us to prove non-existence of nontrivial primitive solutions for large values of p of both equations for new values of d.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Mathematical Society

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FERMAT EQUATIONS
dc.subject
Q-CURVES
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Q-Curves, Hecke characters and some Diophantine equations
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-07-05T15:09:46Z
dc.identifier.eissn
1088-6842
dc.journal.volume
91
dc.journal.number
338
dc.journal.pagination
2817-2865
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Providence
dc.description.fil
Fil: Pacetti, Ariel Martín. Centro de Investigação E Desenvolvimento Em Matemática E Aplicações; Portugal. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Villagra Torcomian, Lucas. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
dc.journal.title
Mathematics of Computation

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1090/mcom/3759
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/mcom/2022-91-338/S0025-5718-2022-03759-5/home.html
Archivos asociados