Artículo
Q-Curves, Hecke characters and some Diophantine equations
Fecha de publicación:
11/2022
Editorial:
American Mathematical Society
Revista:
Mathematics of Computation
ISSN:
0025-5718
e-ISSN:
1088-6842
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we study the equations x4 + dy2 = zp and x2 + dy6 = zp for positive square-free values of d. A Frey curve over Q( √ −d) is attached to each primitive solution, which happens to be a Q-curve. Our main result is the construction of a Hecke character χ satisfying that the Frey elliptic curve representation twisted by χ extends to GalQ, therefore (by Serre’s conjectures) corresponds to a newform in S2(Γ0(n), ε) for explicit values of n and ε. Following some well known results and elimination techniques (together with some improvements) our result provides a systematic procedure to study solutions of the above equations and allows us to prove non-existence of nontrivial primitive solutions for large values of p of both equations for new values of d.
Palabras clave:
FERMAT EQUATIONS
,
Q-CURVES
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Pacetti, Ariel Martín; Villagra Torcomian, Lucas; Q-Curves, Hecke characters and some Diophantine equations; American Mathematical Society; Mathematics of Computation; 91; 338; 11-2022; 2817-2865
Compartir
Altmétricas