Mostrar el registro sencillo del ítem
dc.contributor.author
Silva Do Nascimento, Danielle
dc.contributor.author
Volpe, Verónica
dc.contributor.author
Fernández, Cintia Jimena
dc.contributor.author
Oresti, Gerardo Martin
dc.contributor.author
Ashton, Lorna
dc.contributor.author
Grunhut, Marcos
dc.date.available
2023-07-11T15:16:18Z
dc.date.issued
2022-11-09
dc.identifier.citation
Silva Do Nascimento, Danielle; Volpe, Verónica; Fernández, Cintia Jimena; Oresti, Gerardo Martin; Ashton, Lorna; et al.; Confocal Raman spectroscopy assisted by chemometric tools: A green approach for classification and quantification of octyl p-methoxycinnamate in oil-in-water microemulsions; Elsevier Science; Microchemical Journal; 184; 9-11-2022; 1-9
dc.identifier.issn
0026-265X
dc.identifier.uri
http://hdl.handle.net/11336/203267
dc.description.abstract
This work proposes a green analytical method based on confocal Raman spectrometry and chemometrics tools for the qualitative and quantitative analysis of oil in water microemulsions loaded with the UVB filter octyl p-methoxycinnamate (OMC). The method does not use reagents and only 10 µL of sample are needed. The analyzed microemulsion samples were synthetized in the laboratory using decaethylene glycol mono-dodecyl ether (21.9 %) as non-ionic surfactant, ethyl alcohol (7.3 %) as co-surfactant, oleic acid (1.5 %) as oil phase and water (69.3 %). A physicochemical characterization of the samples was carried out obtaining expected values for droplet size (<20 nm), polydispersity index (<0.290) and conductivity (0.04?0.07 mS cm−1), among others. Linear discriminant analysis (LDA) after selection of variables using the successive projections algorithm (SPA) and soft independent modelling of class analogy (SIMCA) were employed to classify microemulsions with different concentrations of OMC (1.0 to 10.0 %). In the case of LDA, seven Raman spectral variables were previously selected by SPA and after this SPA-LDA model resulted in one error in the prediction set achieving an accuracy of 97.8 %. The SIMCA model (α = 0.05) presented an explained variance higher 97 % using four principal components and it allowed the correct classification of 100 % of the samples (N = 15). In the quantitative analysis, partial least squares (PLS) was used to determine OMC in a range according to international legislation. The model presented optimal statistical parameters (R2 = 0.9699; RMSEP = 0.54 %) and the prediction of samples were in close agreement with HPLC method. Moreover, the greenery of the method was estimated using the AGREE metric and an optimal value of 0.85 was obtained demonstrating the proposed analytical method results environmentally friendly.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
UV filters
dc.subject
Octyl p-methoxycinnamate
dc.subject
Microemulsions
dc.subject
Confocal Raman Spectroscopy
dc.subject
Linear Discriminant Analysis
dc.subject
Successive Projections Algorithm
dc.subject
Soft Independent Modelling by Class Analogy
dc.subject
Partial Least Squares
dc.subject
Green Analytical Chemistry
dc.subject.classification
Química Analítica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Confocal Raman spectroscopy assisted by chemometric tools: A green approach for classification and quantification of octyl p-methoxycinnamate in oil-in-water microemulsions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-06-29T17:45:25Z
dc.journal.volume
184
dc.journal.pagination
1-9
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Silva Do Nascimento, Danielle. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Volpe, Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Fernández, Cintia Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.description.fil
Fil: Oresti, Gerardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Investigaciones Bioquímicas de Bahía Blanca. Universidad Nacional del Sur. Instituto de Investigaciones Bioquímicas de Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; Argentina
dc.description.fil
Fil: Ashton, Lorna. Lancaster University. Department Of Chemistry; Reino Unido
dc.description.fil
Fil: Grunhut, Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
dc.journal.title
Microchemical Journal
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.microc.2022.108151
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0026265X22009791
Archivos asociados