Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Confocal Raman spectroscopy assisted by chemometric tools: A green approach for classification and quantification of octyl p-methoxycinnamate in oil-in-water microemulsions

Silva Do Nascimento, DanielleIcon ; Volpe, VerónicaIcon ; Fernández, Cintia JimenaIcon ; Oresti, Gerardo MartinIcon ; Ashton, Lorna; Grunhut, MarcosIcon
Fecha de publicación: 09/11/2022
Editorial: Elsevier Science
Revista: Microchemical Journal
ISSN: 0026-265X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

This work proposes a green analytical method based on confocal Raman spectrometry and chemometrics tools for the qualitative and quantitative analysis of oil in water microemulsions loaded with the UVB filter octyl p-methoxycinnamate (OMC). The method does not use reagents and only 10 µL of sample are needed. The analyzed microemulsion samples were synthetized in the laboratory using decaethylene glycol mono-dodecyl ether (21.9 %) as non-ionic surfactant, ethyl alcohol (7.3 %) as co-surfactant, oleic acid (1.5 %) as oil phase and water (69.3 %). A physicochemical characterization of the samples was carried out obtaining expected values for droplet size (<20 nm), polydispersity index (<0.290) and conductivity (0.04?0.07 mS cm−1), among others. Linear discriminant analysis (LDA) after selection of variables using the successive projections algorithm (SPA) and soft independent modelling of class analogy (SIMCA) were employed to classify microemulsions with different concentrations of OMC (1.0 to 10.0 %). In the case of LDA, seven Raman spectral variables were previously selected by SPA and after this SPA-LDA model resulted in one error in the prediction set achieving an accuracy of 97.8 %. The SIMCA model (α = 0.05) presented an explained variance higher 97 % using four principal components and it allowed the correct classification of 100 % of the samples (N = 15). In the quantitative analysis, partial least squares (PLS) was used to determine OMC in a range according to international legislation. The model presented optimal statistical parameters (R2 = 0.9699; RMSEP = 0.54 %) and the prediction of samples were in close agreement with HPLC method. Moreover, the greenery of the method was estimated using the AGREE metric and an optimal value of 0.85 was obtained demonstrating the proposed analytical method results environmentally friendly.
Palabras clave: UV filters , Octyl p-methoxycinnamate , Microemulsions , Confocal Raman Spectroscopy , Linear Discriminant Analysis , Successive Projections Algorithm , Soft Independent Modelling by Class Analogy , Partial Least Squares , Green Analytical Chemistry
Ver el registro completo
 
Archivos asociados
Tamaño: 2.025Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/203267
DOI: http://dx.doi.org/10.1016/j.microc.2022.108151
URL: https://www.sciencedirect.com/science/article/pii/S0026265X22009791
Colecciones
Articulos(INIBIBB)
Articulos de INST.DE INVEST.BIOQUIMICAS BAHIA BLANCA (I)
Articulos(INQUISUR)
Articulos de INST.DE QUIMICA DEL SUR
Citación
Silva Do Nascimento, Danielle; Volpe, Verónica; Fernández, Cintia Jimena; Oresti, Gerardo Martin; Ashton, Lorna; et al.; Confocal Raman spectroscopy assisted by chemometric tools: A green approach for classification and quantification of octyl p-methoxycinnamate in oil-in-water microemulsions; Elsevier Science; Microchemical Journal; 184; 9-11-2022; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES