Mostrar el registro sencillo del ítem

dc.contributor.author
Marini, I.  
dc.contributor.author
Borgani, S.  
dc.contributor.author
Saro, A.  
dc.contributor.author
Murante, G.  
dc.contributor.author
Granato, Gian Luigi  
dc.contributor.author
Ragone Figueroa, Cinthia Judith  
dc.contributor.author
Taffoni, G.  
dc.date.available
2023-07-07T19:18:01Z  
dc.date.issued
2022-08  
dc.identifier.citation
Marini, I.; Borgani, S.; Saro, A.; Murante, G.; Granato, Gian Luigi; et al.; Machine learning to identify ICL and BCG in simulated galaxy clusters; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 514; 2; 8-2022; 3082-3096  
dc.identifier.issn
0035-8711  
dc.identifier.uri
http://hdl.handle.net/11336/202791  
dc.description.abstract
Nowadays, Machine Learning techniques offer fast and efficient solutions for classification problems that would require intensive computational resources via traditional methods. We examine the use of a supervised Random Forest to classify stars in simulated galaxy clusters after subtracting the member galaxies. These dynamically different components are interpreted as the individual properties of the stars in the Brightest Cluster Galaxy (BCG) and IntraCluster Light (ICL). We employ matched stellar catalogues (built from the different dynamical properties of BCG and ICL) of 29 simulated clusters from the DIANOGA set to train and test the classifier. The input features are cluster mass, normalized particle cluster-centric distance, and rest-frame velocity. The model is found to correctly identify most of the stars, while the larger errors are exhibited at the BCG outskirts, where the differences between the physical properties of the two components are less obvious. We investigate the robustness of the classifier to numerical resolution, redshift dependence (up to z = 1), and included astrophysical models. We claim that our classifier provides consistent results in simulations for z < 1, at different resolution levels and with significantly different subgrid models. The phase-space structure is examined to assess whether the general properties of the stellar components are recovered: (i) the transition radius between BCG-dominated and ICL-dominated region is identified at 0.04 R200; (ii) the BCG outskirts (>0.1 R200) is significantly affected by uncertainties in the classification process. In conclusion, this work suggests the importance of employing Machine Learning to speed up a computationally expensive classification in simulations.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GALAXIES: STELLAR CONTENT  
dc.subject
METHODS: DATA ANALYSIS  
dc.subject
METHODS: STATISTICAL  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Machine learning to identify ICL and BCG in simulated galaxy clusters  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-07-06T11:32:54Z  
dc.journal.volume
514  
dc.journal.number
2  
dc.journal.pagination
3082-3096  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Marini, I.. Università degli Studi di Trieste; Italia. Institute For Fundamental Physics Of The Universe; Italia. Istituto Nazionale di Fisica Nucleare; Italia. Istituto Nazionale di Astrofisica; Italia  
dc.description.fil
Fil: Borgani, S.. Università degli Studi di Trieste; Italia. Istituto Nazionale di Astrofisica; Italia. Institute For Fundamental Physics Of The Universe; Italia. Istituto Nazionale di Fisica Nucleare; Italia  
dc.description.fil
Fil: Saro, A.. Università degli Studi di Trieste; Italia. Institute For Fundamental Physics Of The Universe; Italia. Istituto Nazionale di Astrofisica; Italia. Istituto Nazionale di Fisica Nucleare; Italia  
dc.description.fil
Fil: Murante, G.. Institute For Fundamental Physics Of The Universe; Italia. Istituto Nazionale di Astrofisica; Italia  
dc.description.fil
Fil: Granato, Gian Luigi. Institute For Fundamental Physics Of The Universe; Italia. Istituto Nazionale di Astrofisica; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina  
dc.description.fil
Fil: Ragone Figueroa, Cinthia Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; Argentina. Istituto Nazionale di Astrofisica; Italia  
dc.description.fil
Fil: Taffoni, G.. Istituto Nazionale di Astrofisica; Italia  
dc.journal.title
Monthly Notices of the Royal Astronomical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/mnras/stac1558  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article-abstract/514/2/3082/6604895?redirectedFrom=fulltext