Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Machine learning to identify ICL and BCG in simulated galaxy clusters

Marini, I.; Borgani, S.; Saro, A.; Murante, G.; Granato, Gian Luigi; Ragone Figueroa, Cinthia JudithIcon ; Taffoni, G.
Fecha de publicación: 08/2022
Editorial: Oxford University Press
Revista: Monthly Notices of the Royal Astronomical Society
ISSN: 0035-8711
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Nowadays, Machine Learning techniques offer fast and efficient solutions for classification problems that would require intensive computational resources via traditional methods. We examine the use of a supervised Random Forest to classify stars in simulated galaxy clusters after subtracting the member galaxies. These dynamically different components are interpreted as the individual properties of the stars in the Brightest Cluster Galaxy (BCG) and IntraCluster Light (ICL). We employ matched stellar catalogues (built from the different dynamical properties of BCG and ICL) of 29 simulated clusters from the DIANOGA set to train and test the classifier. The input features are cluster mass, normalized particle cluster-centric distance, and rest-frame velocity. The model is found to correctly identify most of the stars, while the larger errors are exhibited at the BCG outskirts, where the differences between the physical properties of the two components are less obvious. We investigate the robustness of the classifier to numerical resolution, redshift dependence (up to z = 1), and included astrophysical models. We claim that our classifier provides consistent results in simulations for z < 1, at different resolution levels and with significantly different subgrid models. The phase-space structure is examined to assess whether the general properties of the stellar components are recovered: (i) the transition radius between BCG-dominated and ICL-dominated region is identified at 0.04 R200; (ii) the BCG outskirts (>0.1 R200) is significantly affected by uncertainties in the classification process. In conclusion, this work suggests the importance of employing Machine Learning to speed up a computationally expensive classification in simulations.
Palabras clave: GALAXIES: STELLAR CONTENT , METHODS: DATA ANALYSIS , METHODS: STATISTICAL
Ver el registro completo
 
Archivos asociados
Tamaño: 2.947Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/202791
DOI: http://dx.doi.org/10.1093/mnras/stac1558
URL: https://academic.oup.com/mnras/article-abstract/514/2/3082/6604895?redirectedFro
Colecciones
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
Marini, I.; Borgani, S.; Saro, A.; Murante, G.; Granato, Gian Luigi; et al.; Machine learning to identify ICL and BCG in simulated galaxy clusters; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 514; 2; 8-2022; 3082-3096
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES