Mostrar el registro sencillo del ítem

dc.contributor.author
Andruchow, Esteban  
dc.date.available
2023-07-04T13:27:14Z  
dc.date.issued
2022-07  
dc.identifier.citation
Andruchow, Esteban; Operators which preserve a positive definite inner product; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 94; 3; 7-2022; 29, 1-22  
dc.identifier.issn
0378-620X  
dc.identifier.uri
http://hdl.handle.net/11336/202220  
dc.description.abstract
Let H be a Hilbert space, A a positive definite operator in H and ⟨ f, g⟩ A= ⟨ Af, g⟩ , f, g∈ H, the A-inner product. This paper studies the geometry of the set IAa:={adjointable isometries for⟨,⟩A}.It is proved that IAa is a submanifold of the Banach algebra of adjointable operators, and a homogeneous space of the group of invertible operators in H which are unitaries for the A-inner product. Smooth curves in IAa with given initial conditions, which are minimal for the metric induced by ⟨,⟩A, are presented. This result depends on an adaptation of M.G. Krein’s method for the lifting of symmetric contractions, in order that it works also for symmetrizable transformations (i.e., operators which are selfadjoint for the A-inner product).  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Birkhauser Verlag Ag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
A-ISOMETRIES  
dc.subject
A-UNITARIES  
dc.subject
COMPATIBLE SUBSPACES  
dc.subject
SYMMETRIZABLE TRANSFORMATIONS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Operators which preserve a positive definite inner product  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-16T18:00:23Z  
dc.journal.volume
94  
dc.journal.number
3  
dc.journal.pagination
29, 1-22  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Integral Equations and Operator Theory  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-022-02709-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-022-02709-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2110.10304