Mostrar el registro sencillo del ítem
dc.contributor.author
Andruchow, Esteban
dc.date.available
2023-07-04T13:27:14Z
dc.date.issued
2022-07
dc.identifier.citation
Andruchow, Esteban; Operators which preserve a positive definite inner product; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 94; 3; 7-2022; 29, 1-22
dc.identifier.issn
0378-620X
dc.identifier.uri
http://hdl.handle.net/11336/202220
dc.description.abstract
Let H be a Hilbert space, A a positive definite operator in H and ⟨ f, g⟩ A= ⟨ Af, g⟩ , f, g∈ H, the A-inner product. This paper studies the geometry of the set IAa:={adjointable isometries for⟨,⟩A}.It is proved that IAa is a submanifold of the Banach algebra of adjointable operators, and a homogeneous space of the group of invertible operators in H which are unitaries for the A-inner product. Smooth curves in IAa with given initial conditions, which are minimal for the metric induced by ⟨,⟩A, are presented. This result depends on an adaptation of M.G. Krein’s method for the lifting of symmetric contractions, in order that it works also for symmetrizable transformations (i.e., operators which are selfadjoint for the A-inner product).
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Birkhauser Verlag Ag
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
A-ISOMETRIES
dc.subject
A-UNITARIES
dc.subject
COMPATIBLE SUBSPACES
dc.subject
SYMMETRIZABLE TRANSFORMATIONS
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Operators which preserve a positive definite inner product
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-06-16T18:00:23Z
dc.journal.volume
94
dc.journal.number
3
dc.journal.pagination
29, 1-22
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.journal.title
Integral Equations and Operator Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1007/s00020-022-02709-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-022-02709-0
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2110.10304
Archivos asociados