Artículo
Operators which preserve a positive definite inner product
Fecha de publicación:
07/2022
Editorial:
Birkhauser Verlag Ag
Revista:
Integral Equations and Operator Theory
ISSN:
0378-620X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be a Hilbert space, A a positive definite operator in H and ⟨ f, g⟩ A= ⟨ Af, g⟩ , f, g∈ H, the A-inner product. This paper studies the geometry of the set IAa:={adjointable isometries for⟨,⟩A}.It is proved that IAa is a submanifold of the Banach algebra of adjointable operators, and a homogeneous space of the group of invertible operators in H which are unitaries for the A-inner product. Smooth curves in IAa with given initial conditions, which are minimal for the metric induced by ⟨,⟩A, are presented. This result depends on an adaptation of M.G. Krein’s method for the lifting of symmetric contractions, in order that it works also for symmetrizable transformations (i.e., operators which are selfadjoint for the A-inner product).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Andruchow, Esteban; Operators which preserve a positive definite inner product; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 94; 3; 7-2022; 29, 1-22
Compartir
Altmétricas