Mostrar el registro sencillo del ítem

dc.contributor.author
Bottazzi, Tamara Paula
dc.contributor.author
Varela, Alejandro
dc.date.available
2017-07-12T15:15:36Z
dc.date.issued
2017-05
dc.identifier.citation
Bottazzi, Tamara Paula; Varela, Alejandro; Unitary subgroups and orbits of compact self-adjoint operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 238; 2; 5-2017; 155-176
dc.identifier.issn
0039-3223
dc.identifier.uri
http://hdl.handle.net/11336/20213
dc.description.abstract
Let H be a separable Hilbert space, and let D(B(H) ah) be the antiHermitian bounded diagonal operators in some fixed orthonormal basis and K(H) the compact operators. We study the group of unitary operators Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H) ah), u − e D ∈ K(H)} in order to obtain a concrete description of short curves in unitary Fredholm orbits Ob = {e Kbe−K : K ∈ K(H) ah} of a compact self-adjoint operator b with spectral multiplicity one. We consider the rectifiable distance on Ob defined as the infimum of curve lengths measured with the Finsler metric defined by means of the quotient space K(H) ah/D(K(H) ah). Then for every c ∈ Ob and x ∈ Tc(Ob) there exists a minimal lifting Z0 ∈ B(H) ah (in the quotient norm, not necessarily compact) such that γ(t) = e tZ0 ce−tZ0 is a short curve on Ob in a certain interval.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Polish Academy of Sciences. Institute of Mathematics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Unitary Groups
dc.subject
Lie Subgroups
dc.subject
Unitary Orbits
dc.subject
Geodesic Curves
dc.subject
Minimal Operators in Quotient Spaces
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Unitary subgroups and orbits of compact self-adjoint operators
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-12T13:19:28Z
dc.journal.volume
238
dc.journal.number
2
dc.journal.pagination
155-176
dc.journal.pais
Polonia
dc.journal.ciudad
Varsovia
dc.description.fil
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina
dc.journal.title
Studia Mathematica
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://goo.gl/fMwN63
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm8690-12-2016


Archivos asociados

Documento no disponible

Comunidades y colecciones

  • Articulos(IAM) [228]
    Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"

Mostrar el registro sencillo del ítem