Mostrar el registro sencillo del ítem

dc.contributor.author
Bottazzi, Tamara Paula  
dc.contributor.author
Varela, Alejandro  
dc.date.available
2017-07-12T15:15:36Z  
dc.date.issued
2017-05  
dc.identifier.citation
Bottazzi, Tamara Paula; Varela, Alejandro; Unitary subgroups and orbits of compact self-adjoint operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 238; 2; 5-2017; 155-176  
dc.identifier.issn
0039-3223  
dc.identifier.uri
http://hdl.handle.net/11336/20213  
dc.description.abstract
Let H be a separable Hilbert space, and let D(B(H) ah) be the antiHermitian bounded diagonal operators in some fixed orthonormal basis and K(H) the compact operators. We study the group of unitary operators Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H) ah), u − e D ∈ K(H)} in order to obtain a concrete description of short curves in unitary Fredholm orbits Ob = {e Kbe−K : K ∈ K(H) ah} of a compact self-adjoint operator b with spectral multiplicity one. We consider the rectifiable distance on Ob defined as the infimum of curve lengths measured with the Finsler metric defined by means of the quotient space K(H) ah/D(K(H) ah). Then for every c ∈ Ob and x ∈ Tc(Ob) there exists a minimal lifting Z0 ∈ B(H) ah (in the quotient norm, not necessarily compact) such that γ(t) = e tZ0 ce−tZ0 is a short curve on Ob in a certain interval.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Polish Academy of Sciences. Institute of Mathematics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Unitary Groups  
dc.subject
Lie Subgroups  
dc.subject
Unitary Orbits  
dc.subject
Geodesic Curves  
dc.subject
Minimal Operators in Quotient Spaces  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unitary subgroups and orbits of compact self-adjoint operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-12T13:19:28Z  
dc.journal.volume
238  
dc.journal.number
2  
dc.journal.pagination
155-176  
dc.journal.pais
Polonia  
dc.journal.ciudad
Varsovia  
dc.description.fil
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina  
dc.description.fil
Fil: Varela, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderon; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina  
dc.journal.title
Studia Mathematica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://goo.gl/fMwN63  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4064/sm8690-12-2016