Artículo
Unitary subgroups and orbits of compact self-adjoint operators
Fecha de publicación:
05/2017
Editorial:
Polish Academy of Sciences. Institute of Mathematics
Revista:
Studia Mathematica
ISSN:
0039-3223
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let H be a separable Hilbert space, and let D(B(H) ah) be the antiHermitian bounded diagonal operators in some fixed orthonormal basis and K(H) the compact operators. We study the group of unitary operators Uk,d = {u ∈ U(H) : ∃D ∈ D(B(H) ah), u − e D ∈ K(H)} in order to obtain a concrete description of short curves in unitary Fredholm orbits Ob = {e Kbe−K : K ∈ K(H) ah} of a compact self-adjoint operator b with spectral multiplicity one. We consider the rectifiable distance on Ob defined as the infimum of curve lengths measured with the Finsler metric defined by means of the quotient space K(H) ah/D(K(H) ah). Then for every c ∈ Ob and x ∈ Tc(Ob) there exists a minimal lifting Z0 ∈ B(H) ah (in the quotient norm, not necessarily compact) such that γ(t) = e tZ0 ce−tZ0 is a short curve on Ob in a certain interval.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Bottazzi, Tamara Paula; Varela, Alejandro; Unitary subgroups and orbits of compact self-adjoint operators; Polish Academy of Sciences. Institute of Mathematics; Studia Mathematica; 238; 2; 5-2017; 155-176
Compartir
Altmétricas