Mostrar el registro sencillo del ítem
dc.contributor.author
Torres Díaz, Jorge

dc.contributor.author
Grad, Gabriela Beatriz

dc.contributor.author
Bonzi, Edgardo

dc.date.available
2023-06-29T21:52:25Z
dc.date.issued
2022-03-01
dc.identifier.citation
Torres Díaz, Jorge; Grad, Gabriela Beatriz; Bonzi, Edgardo; Measurement of linear accelerator spectra, reconstructed from percentage depth dose curves by neural networks; Istituti Editoriali e Poligrafici Internazionali; Physica Medica; 96; 1-3-2022; 81-89
dc.identifier.issn
1120-1797
dc.identifier.uri
http://hdl.handle.net/11336/201851
dc.description.abstract
Purpose Linear accelerator (linac) spectra, used to improve the accuracy of dose calculation and to produce a complete description of beam quality, among other aspects, are relevant in radiotherapy and linear accelerator physics. Methods In this work we apply neural networks in solving an ill-conditioned system of linear equations, to indirectly measure the linear accelerator spectra via the percentage depth dose curves. The photon beam spectra are related to radiation doses through a Fredholm integral equation. To address our problem we measured the percentage depth dose curve in water and solved a discretized Fredholm equation using artificial neural network. After analysing the typology of our physical problem we selected a MultiLayer Perceptron Neural Network and designed the most suitable neural network architecture. Results The reconstructed spectra were compared with spectra from three linacs, two of them obtained by us through simulations and the third produced by another author, achieving a concordance between 92 % and 96 %. Therefore, the spectrum of any accelerator can be quickly and easily reconstructed from measured percent depth dose curves, applying a trained artificial neural network.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Istituti Editoriali e Poligrafici Internazionali

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ARTIFICIAL NEURAL NETWORKS
dc.subject
FREDHOLM EQUATION
dc.subject
HIGH ENERGY PHOTON SPECTRUM
dc.subject
LINEAR ACCELERATOR SPECTRA
dc.subject
MONTE CARLO
dc.subject
PERCENTAGE DEPTH DOSE
dc.subject.classification
Física Atómica, Molecular y Química

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Measurement of linear accelerator spectra, reconstructed from percentage depth dose curves by neural networks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-06-26T13:37:37Z
dc.journal.volume
96
dc.journal.pagination
81-89
dc.journal.pais
Italia

dc.description.fil
Fil: Torres Díaz, Jorge. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Grupo de Espectroscopia Atomica y Nuclear; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Pontificia Universidad Católica Madre y Maestra; República Dominicana
dc.description.fil
Fil: Grad, Gabriela Beatriz. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.description.fil
Fil: Bonzi, Edgardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
dc.journal.title
Physica Medica

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ejmp.2022.02.019
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.physicamedica.com/article/S1120-1797(22)01431-4/fulltext
Archivos asociados