Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Measurement of linear accelerator spectra, reconstructed from percentage depth dose curves by neural networks

Torres Díaz, JorgeIcon ; Grad, Gabriela Beatriz; Bonzi, Edgardo
Fecha de publicación: 01/03/2022
Editorial: Istituti Editoriali e Poligrafici Internazionali
Revista: Physica Medica
ISSN: 1120-1797
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física Atómica, Molecular y Química

Resumen

Purpose Linear accelerator (linac) spectra, used to improve the accuracy of dose calculation and to produce a complete description of beam quality, among other aspects, are relevant in radiotherapy and linear accelerator physics. Methods In this work we apply neural networks in solving an ill-conditioned system of linear equations, to indirectly measure the linear accelerator spectra via the percentage depth dose curves. The photon beam spectra are related to radiation doses through a Fredholm integral equation. To address our problem we measured the percentage depth dose curve in water and solved a discretized Fredholm equation using artificial neural network. After analysing the typology of our physical problem we selected a MultiLayer Perceptron Neural Network and designed the most suitable neural network architecture. Results The reconstructed spectra were compared with spectra from three linacs, two of them obtained by us through simulations and the third produced by another author, achieving a concordance between 92 % and 96 %. Therefore, the spectrum of any accelerator can be quickly and easily reconstructed from measured percent depth dose curves, applying a trained artificial neural network.
Palabras clave: ARTIFICIAL NEURAL NETWORKS , FREDHOLM EQUATION , HIGH ENERGY PHOTON SPECTRUM , LINEAR ACCELERATOR SPECTRA , MONTE CARLO , PERCENTAGE DEPTH DOSE
Ver el registro completo
 
Archivos asociados
Tamaño: 4.242Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/201851
DOI: http://dx.doi.org/10.1016/j.ejmp.2022.02.019
URL: https://www.physicamedica.com/article/S1120-1797(22)01431-4/fulltext
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Torres Díaz, Jorge; Grad, Gabriela Beatriz; Bonzi, Edgardo; Measurement of linear accelerator spectra, reconstructed from percentage depth dose curves by neural networks; Istituti Editoriali e Poligrafici Internazionali; Physica Medica; 96; 1-3-2022; 81-89
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES