Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Martinez, Alejandra Mercedes  
dc.date.available
2023-06-14T16:07:18Z  
dc.date.issued
2022-09  
dc.identifier.citation
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; A robust spline approach in partially linear additive models; Elsevier Science; Computational Statistics and Data Analysis; 178; 9-2022; 1-35  
dc.identifier.issn
0167-9473  
dc.identifier.uri
http://hdl.handle.net/11336/200598  
dc.description.abstract
Partially linear additive models generalize linear regression models by assuming that the relationship between the response and a set of explanatory variables is linear on some of the covariates, while the other ones enter into the model through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved. When dealing with additive components, the problem of providing reliable estimators when atypical data arise is of practical importance motivating the need of robust procedures. Based on this fact, a family of robust estimators for partially linear additive models that combines B-splines with robust linear MM-regression estimators is proposed. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. Furthermore, the asymptotic normality for the linear regression estimators is obtained. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust MM-proposal based on B-splines with its classical counterpart and also with a quantile approach. The obtained results show the benefits of using the robust MM-approach. The analysis of a real data set illustrates the usefulness of the proposed method.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
B-SPLINES  
dc.subject
PARTIALLY LINEAR ADDITIVE MODELS  
dc.subject
ROBUST ESTIMATION  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A robust spline approach in partially linear additive models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-14T10:57:17Z  
dc.journal.volume
178  
dc.journal.pagination
1-35  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina  
dc.description.fil
Fil: Martinez, Alejandra Mercedes. Universidad Nacional de Luján; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computational Statistics and Data Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0167947322001918  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.csda.2022.107611