Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A robust spline approach in partially linear additive models

Boente Boente, Graciela LinaIcon ; Martinez, Alejandra MercedesIcon
Fecha de publicación: 09/2022
Editorial: Elsevier Science
Revista: Computational Statistics and Data Analysis
ISSN: 0167-9473
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Partially linear additive models generalize linear regression models by assuming that the relationship between the response and a set of explanatory variables is linear on some of the covariates, while the other ones enter into the model through unknown univariate smooth functions. The harmful effect of outliers either in the residuals or in the covariates involved in the linear component has been described in the situation of partially linear models, that is, when only one nonparametric component is involved. When dealing with additive components, the problem of providing reliable estimators when atypical data arise is of practical importance motivating the need of robust procedures. Based on this fact, a family of robust estimators for partially linear additive models that combines B-splines with robust linear MM-regression estimators is proposed. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. Furthermore, the asymptotic normality for the linear regression estimators is obtained. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust MM-proposal based on B-splines with its classical counterpart and also with a quantile approach. The obtained results show the benefits of using the robust MM-approach. The analysis of a real data set illustrates the usefulness of the proposed method.
Palabras clave: B-SPLINES , PARTIALLY LINEAR ADDITIVE MODELS , ROBUST ESTIMATION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.558Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/200598
URL: https://linkinghub.elsevier.com/retrieve/pii/S0167947322001918
DOI: http://dx.doi.org/10.1016/j.csda.2022.107611
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; A robust spline approach in partially linear additive models; Elsevier Science; Computational Statistics and Data Analysis; 178; 9-2022; 1-35
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES