Mostrar el registro sencillo del ítem
dc.contributor.author
Frutos, Mariano
dc.contributor.author
Tohme, Fernando Abel
dc.date.available
2015-09-16T16:22:57Z
dc.date.issued
2012-04-25
dc.identifier.citation
Frutos, Mariano; Tohme, Fernando Abel; A multi-objective memetic algorithm for the job-shop scheduling problem; Springer; Operations Research & Decision Theory; 13; 2; 25-4-2012; 233-250
dc.identifier.issn
1109-2858
dc.identifier.uri
http://hdl.handle.net/11336/2004
dc.description.abstract
Planning means, in the realm of production activities, to design, coordinate, manage and control all the operations involved in the production system. Many MOPs (Multi-Objective Optimization Problems) are generated in this framework. They require the optimization of several functions that are usually very complex, which makes the search for solutions very expensive. Multi-objective optimization seeks Pareto-optimal solutions for these problems. In this work we introduce, a Multi-Objective Memetic Algorithm intended to solve a very important MOP in the field, namely, the Job-Shop Scheduling Problem. The algorithm combines a MOEA (Multi-Objective Evolutionary Algorithm) and a path-dependent search algorithm (Multi-Objective Simulated Annealing), which is enacted at the genetic phase of the procedure. The joint interaction of those two components yields a very efficient procedure for solving the MOP under study. In order to select the appropriate MOEA both NSGAII and SPEAII as well as their predecessors (NSGA and SPEA) are pairwise tested on problems of low, medium and high complexity. We find that NSGAII yields a better performance, and therefore is the MOEA of choice.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Optimization
dc.subject
Production
dc.subject
Job-Shop Scheduling Problem
dc.subject
Multi-Objective Memetic Algorithm
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A multi-objective memetic algorithm for the job-shop scheduling problem
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2016-03-30 10:35:44.97925-03
dc.journal.volume
13
dc.journal.number
2
dc.journal.pagination
233-250
dc.journal.pais
Alemania
dc.journal.ciudad
Heidelberg
dc.description.fil
Fil: Frutos, Mariano. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahia Blanca. Instituto de Investigaciones Económicas y Sociales del Sur; Argentina
dc.description.fil
Fil: Tohme, Fernando Abel. Universidad Nacional del Sur; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina
dc.journal.title
Operations Research & Decision Theory
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s12351-012-0125-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s12351-012-0125-y
Archivos asociados