Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A multi-objective memetic algorithm for the job-shop scheduling problem

Frutos, MarianoIcon ; Tohme, Fernando AbelIcon
Fecha de publicación: 25/04/2012
Editorial: Springer
Revista: Operations Research & Decision Theory
ISSN: 1109-2858
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Planning means, in the realm of production activities, to design, coordinate, manage and control all the operations involved in the production system. Many MOPs (Multi-Objective Optimization Problems) are generated in this framework. They require the optimization of several functions that are usually very complex, which makes the search for solutions very expensive. Multi-objective optimization seeks Pareto-optimal solutions for these problems. In this work we introduce, a Multi-Objective Memetic Algorithm intended to solve a very important MOP in the field, namely, the Job-Shop Scheduling Problem. The algorithm combines a MOEA (Multi-Objective Evolutionary Algorithm) and a path-dependent search algorithm (Multi-Objective Simulated Annealing), which is enacted at the genetic phase of the procedure. The joint interaction of those two components yields a very efficient procedure for solving the MOP under study. In order to select the appropriate MOEA both NSGAII and SPEAII as well as their predecessors (NSGA and SPEA) are pairwise tested on problems of low, medium and high complexity. We find that NSGAII yields a better performance, and therefore is the MOEA of choice.
Palabras clave: Optimization , Production , Job-Shop Scheduling Problem , Multi-Objective Memetic Algorithm
Ver el registro completo
 
Archivos asociados
Tamaño: 886.7Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/2004
DOI: http://dx.doi.org/10.1007/s12351-012-0125-y
URL: http://link.springer.com/article/10.1007/s12351-012-0125-y
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Frutos, Mariano; Tohme, Fernando Abel; A multi-objective memetic algorithm for the job-shop scheduling problem; Springer; Operations Research & Decision Theory; 13; 2; 25-4-2012; 233-250
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES