Mostrar el registro sencillo del ítem
dc.contributor.author
Vera, Matías Alejandro
dc.contributor.author
Piantanida, Pablo
dc.contributor.author
Rey Vega, Leonardo Javier
dc.date.available
2023-06-08T17:57:46Z
dc.date.issued
2018
dc.identifier.citation
The role of the information bottleneck in representation learning; IEEE International Symposium on Information Theory; Colorado; Estados Unidos; 2018; 1-5
dc.identifier.issn
2157-8117
dc.identifier.uri
http://hdl.handle.net/11336/200020
dc.description.abstract
A grand challenge in representation learning is thedevelopment of computational algorithms that learn the differentexplanatory factors of variation behind high-dimensional data.Encoder models are usually determined to optimize performanceon training data when the real objective is to generalize well toother (unseen) data. Although numerical evidence suggests thatnoise injection at the level of representations might improve thegeneralization ability of the resulting encoders, an informationtheoretic justification of this principle remains elusive. In thiswork, we derive an upper bound to the so-called generalizationgap corresponding to the cross-entropy loss and show that whenthis bound times a suitable multiplier and the empirical riskare minimized jointly, the problem is equivalent to optimizingthe Information Bottleneck objective with respect to the empirical data-distribution. We specialize our general conclusionsto analyze the dropout regularization method in deep neuralnetworks, explaining how this regularizer helps to decrease thegeneralization gap.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
BOTTLENECK
dc.subject
GENERALIZATION
dc.subject
REPRESENTATION
dc.subject
INFORMATION
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
The role of the information bottleneck in representation learning
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-06-07T22:44:53Z
dc.journal.pagination
1-5
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Colorado
dc.description.fil
Fil: Vera, Matías Alejandro. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina
dc.description.fil
Fil: Piantanida, Pablo. Université Paris Sud; Francia
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8437679
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ISIT.2018.8437679
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Simposio
dc.description.nombreEvento
IEEE International Symposium on Information Theory
dc.date.evento
2018-06-17
dc.description.ciudadEvento
Colorado
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.revista
IEEE International Symposium on Information Theory
dc.date.eventoHasta
2018-06-22
dc.type
Simposio
Archivos asociados