Evento
The role of the information bottleneck in representation learning
Tipo del evento:
Simposio
Nombre del evento:
IEEE International Symposium on Information Theory
Fecha del evento:
17/06/2018
Institución Organizadora:
Institute of Electrical and Electronics Engineers;
Título de la revista:
IEEE International Symposium on Information Theory
Editorial:
Institute of Electrical and Electronics Engineers
ISSN:
2157-8117
Idioma:
Inglés
Clasificación temática:
Resumen
A grand challenge in representation learning is thedevelopment of computational algorithms that learn the differentexplanatory factors of variation behind high-dimensional data.Encoder models are usually determined to optimize performanceon training data when the real objective is to generalize well toother (unseen) data. Although numerical evidence suggests thatnoise injection at the level of representations might improve thegeneralization ability of the resulting encoders, an informationtheoretic justification of this principle remains elusive. In thiswork, we derive an upper bound to the so-called generalizationgap corresponding to the cross-entropy loss and show that whenthis bound times a suitable multiplier and the empirical riskare minimized jointly, the problem is equivalent to optimizingthe Information Bottleneck objective with respect to the empirical data-distribution. We specialize our general conclusionsto analyze the dropout regularization method in deep neuralnetworks, explaining how this regularizer helps to decrease thegeneralization gap.
Palabras clave:
BOTTLENECK
,
GENERALIZATION
,
REPRESENTATION
,
INFORMATION
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(CSC)
Eventos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Eventos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
The role of the information bottleneck in representation learning; IEEE International Symposium on Information Theory; Colorado; Estados Unidos; 2018; 1-5
Compartir
Altmétricas