Mostrar el registro sencillo del ítem

dc.contributor.author
Catania, Carlos Adrian  
dc.contributor.author
Bromberg, Facundo  
dc.contributor.author
Garcia Garino, Carlos Gabriel  
dc.date.available
2023-06-06T11:24:26Z  
dc.date.issued
2012-02  
dc.identifier.citation
Catania, Carlos Adrian; Bromberg, Facundo; Garcia Garino, Carlos Gabriel; An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 2; 2-2012; 1822-1829  
dc.identifier.issn
0957-4174  
dc.identifier.uri
http://hdl.handle.net/11336/199687  
dc.description.abstract
In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic vastly outnumbers the number of attacks present in the dataset. A situation which can not be always hold. This work presents an approach for autonomous labeling of normal traffic as a way of dealing with situations where class distribution does not present the imbalance required for SVM algorithms. In this case, the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Experiments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling approach not only outperforms existing SVM alternatives but also, under some attack distributions, obtains improvements over SNORT itself.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ANOMALY DETECTION  
dc.subject
INTRUSION DETECTION SYSTEMS  
dc.subject
LABELING  
dc.subject
SVM  
dc.subject.classification
Telecomunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-06-05T11:58:23Z  
dc.journal.volume
39  
dc.journal.number
2  
dc.journal.pagination
1822-1829  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina  
dc.description.fil
Fil: Bromberg, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Tecnológica Nacional. Facultad Regional Mendoza. Departamento de Sistemas de Información. Laboratorio DHARMA; Argentina  
dc.description.fil
Fil: Garcia Garino, Carlos Gabriel. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.journal.title
Expert Systems with Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.eswa.2011.08.068