Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection

Catania, Carlos AdrianIcon ; Bromberg, FacundoIcon ; Garcia Garino, Carlos GabrielIcon
Fecha de publicación: 02/2012
Editorial: Pergamon-Elsevier Science Ltd
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Telecomunicaciones

Resumen

In the past years, several support vector machines (SVM) novelty detection approaches have been applied on the network intrusion detection field. The main advantage of these approaches is that they can characterize normal traffic even when trained with datasets containing not only normal traffic but also a number of attacks. Unfortunately, these algorithms seem to be accurate only when the normal traffic vastly outnumbers the number of attacks present in the dataset. A situation which can not be always hold. This work presents an approach for autonomous labeling of normal traffic as a way of dealing with situations where class distribution does not present the imbalance required for SVM algorithms. In this case, the autonomous labeling process is made by SNORT, a misuse-based intrusion detection system. Experiments conducted on the 1998 DARPA dataset show that the use of the proposed autonomous labeling approach not only outperforms existing SVM alternatives but also, under some attack distributions, obtains improvements over SNORT itself.
Palabras clave: ANOMALY DETECTION , INTRUSION DETECTION SYSTEMS , LABELING , SVM
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 431.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/199687
DOI: http://dx.doi.org/10.1016/j.eswa.2011.08.068
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Catania, Carlos Adrian; Bromberg, Facundo; Garcia Garino, Carlos Gabriel; An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection; Pergamon-Elsevier Science Ltd; Expert Systems with Applications; 39; 2; 2-2012; 1822-1829
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES