Mostrar el registro sencillo del ítem

dc.contributor.author
Maya, Juan Augusto  
dc.contributor.author
Rey Vega, Leonardo Javier  
dc.contributor.author
Galarza, Cecilia Gabriela  
dc.date.available
2023-06-05T16:09:19Z  
dc.date.issued
2013  
dc.identifier.citation
Error Exponents for Bias Detection of a Correlated Process over a MAC Fading Channel; 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing ; Saint Martin; Francia; 2013; 484-487  
dc.identifier.isbn
978-1-4673-3146-3  
dc.identifier.uri
http://hdl.handle.net/11336/199570  
dc.description.abstract
In this paper, we analyze a binary hypothesis testing problem using a wireless sensor network (WSN). Using Large Deviation Theory (LDT), we compute the exponents of the error probabilities for the detection of a constant under a correlated process. Each sensor transmits its local measurement trough a multiple-access (MAC) fading channel with a line-of-sight (LOS) component to the fusion center (FC) using an uncoded analog scheme. The FC decides if the constant is present or not. We examine the behavior of the error exponents as function of the correlation process and the fading LOS component. We also show that this scheme is asymptotically optimal, i.e., it achieves the centralized error exponents when the number of sensors approaches to infinity even when the fading LOS paths betweenthe sensors and the FC are not so strong and the underlaying process is correlated. In this way, neither feedback between the FC and the sensors nor cooperation between sensors is necessary to provide a sufficient statistic to the FC.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
wireless sensor network  
dc.subject
asymtotic performance  
dc.subject
large deviation theory  
dc.subject.classification
Telecomunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Error Exponents for Bias Detection of a Correlated Process over a MAC Fading Channel  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-05-18T14:06:39Z  
dc.journal.pagination
484-487  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.description.fil
Fil: Galarza, Cecilia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6714113  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/CAMSAP.2013.6714113  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Workshop  
dc.description.nombreEvento
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing  
dc.date.evento
2013-12-15  
dc.description.ciudadEvento
Saint Martin  
dc.description.paisEvento
Francia  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers  
dc.source.libro
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing  
dc.date.eventoHasta
2013-12-18  
dc.type
Workshop