Mostrar el registro sencillo del ítem
dc.contributor.author
Maya, Juan Augusto
dc.contributor.author
Rey Vega, Leonardo Javier
dc.contributor.author
Galarza, Cecilia Gabriela
dc.date.available
2023-06-05T16:09:19Z
dc.date.issued
2013
dc.identifier.citation
Error Exponents for Bias Detection of a Correlated Process over a MAC Fading Channel; 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing ; Saint Martin; Francia; 2013; 484-487
dc.identifier.isbn
978-1-4673-3146-3
dc.identifier.uri
http://hdl.handle.net/11336/199570
dc.description.abstract
In this paper, we analyze a binary hypothesis testing problem using a wireless sensor network (WSN). Using Large Deviation Theory (LDT), we compute the exponents of the error probabilities for the detection of a constant under a correlated process. Each sensor transmits its local measurement trough a multiple-access (MAC) fading channel with a line-of-sight (LOS) component to the fusion center (FC) using an uncoded analog scheme. The FC decides if the constant is present or not. We examine the behavior of the error exponents as function of the correlation process and the fading LOS component. We also show that this scheme is asymptotically optimal, i.e., it achieves the centralized error exponents when the number of sensors approaches to infinity even when the fading LOS paths betweenthe sensors and the FC are not so strong and the underlaying process is correlated. In this way, neither feedback between the FC and the sensors nor cooperation between sensors is necessary to provide a sufficient statistic to the FC.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
wireless sensor network
dc.subject
asymtotic performance
dc.subject
large deviation theory
dc.subject.classification
Telecomunicaciones
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Error Exponents for Bias Detection of a Correlated Process over a MAC Fading Channel
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-05-18T14:06:39Z
dc.journal.pagination
484-487
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Maya, Juan Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.description.fil
Fil: Rey Vega, Leonardo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.description.fil
Fil: Galarza, Cecilia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Simulación Computacional para Aplicaciones Tecnológicas; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Electronica; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/6714113
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/CAMSAP.2013.6714113
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Workshop
dc.description.nombreEvento
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
dc.date.evento
2013-12-15
dc.description.ciudadEvento
Saint Martin
dc.description.paisEvento
Francia
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Institute of Electrical and Electronics Engineers
dc.source.libro
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
dc.date.eventoHasta
2013-12-18
dc.type
Workshop
Archivos asociados