Evento
Error Exponents for Bias Detection of a Correlated Process over a MAC Fading Channel
Tipo del evento:
Workshop
Nombre del evento:
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Fecha del evento:
15/12/2013
Institución Organizadora:
Institute of Electrical and Electronics Engineers;
Título del Libro:
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing
Editorial:
Institute of Electrical and Electronics Engineers
ISBN:
978-1-4673-3146-3
Idioma:
Inglés
Clasificación temática:
Resumen
In this paper, we analyze a binary hypothesis testing problem using a wireless sensor network (WSN). Using Large Deviation Theory (LDT), we compute the exponents of the error probabilities for the detection of a constant under a correlated process. Each sensor transmits its local measurement trough a multiple-access (MAC) fading channel with a line-of-sight (LOS) component to the fusion center (FC) using an uncoded analog scheme. The FC decides if the constant is present or not. We examine the behavior of the error exponents as function of the correlation process and the fading LOS component. We also show that this scheme is asymptotically optimal, i.e., it achieves the centralized error exponents when the number of sensors approaches to infinity even when the fading LOS paths betweenthe sensors and the FC are not so strong and the underlaying process is correlated. In this way, neither feedback between the FC and the sensors nor cooperation between sensors is necessary to provide a sufficient statistic to the FC.
Palabras clave:
wireless sensor network
,
asymtotic performance
,
large deviation theory
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(CSC)
Eventos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Eventos de CENTRO DE SIMULACION COMPUTACIONAL P/APLIC. TECNOLOGICAS
Citación
Error Exponents for Bias Detection of a Correlated Process over a MAC Fading Channel; 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing ; Saint Martin; Francia; 2013; 484-487
Compartir
Altmétricas