Mostrar el registro sencillo del ítem

dc.contributor.author
Pérez Millán, Mercedes Soledad  
dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Shiu, Anne  
dc.contributor.author
Conradi, Carsten  
dc.date.available
2017-07-07T21:49:14Z  
dc.date.issued
2012-05  
dc.identifier.citation
Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten; Chemical Reaction Systems with Toric Steady States; Springer; Bulletin Of Mathematical Biology; 74; 5; 5-2012; 1027-1065  
dc.identifier.issn
0092-8240  
dc.identifier.uri
http://hdl.handle.net/11336/19942  
dc.description.abstract
Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Chemical Reaction Network  
dc.subject
Binomial Ideal  
dc.subject
Steady State  
dc.subject
Multistationarity  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Chemical Reaction Systems with Toric Steady States  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-07T14:43:48Z  
dc.identifier.eissn
1522-9602  
dc.journal.volume
74  
dc.journal.number
5  
dc.journal.pagination
1027-1065  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Pérez Millán, Mercedes Soledad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Shiu, Anne. University of Duke; Estados Unidos  
dc.description.fil
Fil: Conradi, Carsten. Max Planck Institut Dynamik komplexer technischer Systeme; Alemania  
dc.journal.title
Bulletin Of Mathematical Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11538-011-9685-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11538-011-9685-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1102.1590