Mostrar el registro sencillo del ítem
dc.contributor.author
Pérez Millán, Mercedes Soledad
dc.contributor.author
Dickenstein, Alicia Marcela
dc.contributor.author
Shiu, Anne
dc.contributor.author
Conradi, Carsten
dc.date.available
2017-07-07T21:49:14Z
dc.date.issued
2012-05
dc.identifier.citation
Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten; Chemical Reaction Systems with Toric Steady States; Springer; Bulletin Of Mathematical Biology; 74; 5; 5-2012; 1027-1065
dc.identifier.issn
0092-8240
dc.identifier.uri
http://hdl.handle.net/11336/19942
dc.description.abstract
Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Chemical Reaction Network
dc.subject
Binomial Ideal
dc.subject
Steady State
dc.subject
Multistationarity
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Chemical Reaction Systems with Toric Steady States
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-07T14:43:48Z
dc.identifier.eissn
1522-9602
dc.journal.volume
74
dc.journal.number
5
dc.journal.pagination
1027-1065
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Pérez Millán, Mercedes Soledad. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Shiu, Anne. University of Duke; Estados Unidos
dc.description.fil
Fil: Conradi, Carsten. Max Planck Institut Dynamik komplexer technischer Systeme; Alemania
dc.journal.title
Bulletin Of Mathematical Biology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11538-011-9685-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11538-011-9685-x
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1102.1590
Archivos asociados