Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Chemical Reaction Systems with Toric Steady States

Pérez Millán, Mercedes SoledadIcon ; Dickenstein, Alicia MarcelaIcon ; Shiu, Anne; Conradi, Carsten
Fecha de publicación: 05/2012
Editorial: Springer
Revista: Bulletin Of Mathematical Biology
ISSN: 0092-8240
e-ISSN: 1522-9602
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Aplicada

Resumen

Mass-action chemical reaction systems are frequently used in computational biology. The corresponding polynomial dynamical systems are often large (consisting of tens or even hundreds of ordinary differential equations) and poorly parameterized (due to noisy measurement data and a small number of data points and repetitions). Therefore, it is often difficult to establish the existence of (positive) steady states or to determine whether more complicated phenomena such as multistationarity exist. If, however, the steady state ideal of the system is a binomial ideal, then we show that these questions can be answered easily. The focus of this work is on systems with this property, and we say that such systems have toric steady states. Our main result gives sufficient conditions for a chemical reaction system to have toric steady states. Furthermore, we analyze the capacity of such a system to exhibit positive steady states and multistationarity. Examples of systems with toric steady states include weakly-reversible zero-deficiency chemical reaction systems. An important application of our work concerns the networks that describe the multisite phosphorylation of a protein by a kinase/phosphatase pair in a sequential and distributive mechanism.
Palabras clave: Chemical Reaction Network , Binomial Ideal , Steady State , Multistationarity
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 418.4Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/19942
DOI: http://dx.doi.org/10.1007/s11538-011-9685-x
URL: https://link.springer.com/article/10.1007%2Fs11538-011-9685-x
URL: https://arxiv.org/abs/1102.1590
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Pérez Millán, Mercedes Soledad; Dickenstein, Alicia Marcela; Shiu, Anne; Conradi, Carsten; Chemical Reaction Systems with Toric Steady States; Springer; Bulletin Of Mathematical Biology; 74; 5; 5-2012; 1027-1065
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES