Artículo
A posteriori error estimates for non-conforming approximation of eigenvalue problems
Fecha de publicación:
05/2012
Editorial:
Elsevier Science
Revista:
Applied Numerical Mathematics
ISSN:
0168-9274
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix– Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom.
Palabras clave:
A Posteriori Error Estimates
,
Non Conforming Methods
,
Eigenvalues
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dari, Enzo Alberto; Duran, Ricardo Guillermo; Padra, Claudio; A posteriori error estimates for non-conforming approximation of eigenvalue problems; Elsevier Science; Applied Numerical Mathematics; 62; 5; 5-2012; 580-591
Compartir
Altmétricas