Mostrar el registro sencillo del ítem
dc.contributor.author
Dimant, Veronica Isabel
dc.contributor.author
Galicer, Daniel Eric
dc.contributor.author
García, Ricardo
dc.date.available
2017-07-07T21:09:29Z
dc.date.issued
2012-03
dc.identifier.citation
Dimant, Veronica Isabel; Galicer, Daniel Eric; García, Ricardo; Geometry of integral polynomials, M-ideals and unique norm preserving extensions; Elsevier Inc; Journal Of Functional Analysis; 262; 5; 3-2012; 1987-2012
dc.identifier.issn
0022-1236
dc.identifier.uri
http://hdl.handle.net/11336/19933
dc.description.abstract
We use the Aron–Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φk: φ ∈ X∗, φ = 1}. With this description we show that, for real Banach spaces X and Y , if X is a nontrivial M-ideal in Y , then k,s εk,s X (the k-th symmetric tensor product of X endowed with the injective symmetric tensor norm) is never an M-ideal in k,s εk,s Y . This result marks up a difference with the behavior of nonsymmetric tensors since, when X is an M-ideal in Y , it is known that k εkX (the k-th tensor product of X endowed with the injective tensor norm) is an M-ideal in k εkY . Nevertheless, if X is also Asplund, we prove that every integral k-homogeneous polynomial in X has a unique extension to Y that preserves the integral norm. Other applications to the metric and isomorphic theory of symmetric tensor products and polynomial ideals are also given.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Inc
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Integral Polynomials
dc.subject
Symmetric Tensor Products
dc.subject
M-Ideals
dc.subject
Extreme Points
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-07-07T14:44:20Z
dc.journal.volume
262
dc.journal.number
5
dc.journal.pagination
1987-2012
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Dimant, Veronica Isabel. Universidad de San Andres; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: García, Ricardo. Universidad de Extremadura; España
dc.journal.title
Journal Of Functional Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jfa.2011.12.021
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022123611004605
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1108.3975
Archivos asociados