Artículo
Geometry of integral polynomials, M-ideals and unique norm preserving extensions
Fecha de publicación:
03/2012
Editorial:
Elsevier Inc
Revista:
Journal Of Functional Analysis
ISSN:
0022-1236
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We use the Aron–Berner extension to prove that the set of extreme points of the unit ball of the space of integral k-homogeneous polynomials over a real Banach space X is {±φk: φ ∈ X∗, φ = 1}. With this description we show that, for real Banach spaces X and Y , if X is a nontrivial M-ideal in Y , then k,s εk,s X (the k-th symmetric tensor product of X endowed with the injective symmetric tensor norm) is never an M-ideal in k,s εk,s Y . This result marks up a difference with the behavior of nonsymmetric tensors since, when X is an M-ideal in Y , it is known that k εkX (the k-th tensor product of X endowed with the injective tensor norm) is an M-ideal in k εkY . Nevertheless, if X is also Asplund, we prove that every integral k-homogeneous polynomial in X has a unique extension to Y that preserves the integral norm. Other applications to the metric and isomorphic theory of symmetric tensor products and polynomial ideals are also given.
Palabras clave:
Integral Polynomials
,
Symmetric Tensor Products
,
M-Ideals
,
Extreme Points
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Dimant, Veronica Isabel; Galicer, Daniel Eric; García, Ricardo; Geometry of integral polynomials, M-ideals and unique norm preserving extensions; Elsevier Inc; Journal Of Functional Analysis; 262; 5; 3-2012; 1987-2012
Compartir
Altmétricas