Mostrar el registro sencillo del ítem

dc.contributor.author
Giusti, Sebastian Miguel  
dc.contributor.author
Novotny, Antonio André  
dc.date.available
2023-05-31T14:42:53Z  
dc.date.issued
2012-12  
dc.identifier.citation
Giusti, Sebastian Miguel; Novotny, Antonio André; Topological Derivative for an Anisotropic and Heterogeneous Heat Diffusion Problem; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 46; 12-2012; 26-33  
dc.identifier.issn
0093-6413  
dc.identifier.uri
http://hdl.handle.net/11336/199135  
dc.description.abstract
The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of physical phenomenon modeled by partial differential equations, considering homogeneous and isotropic constitutive behavior. In fact, only a few works dealing with heterogeneous and anisotropic material behavior can be found in the literature, and, in general, the derived formulas are given in an abstract form. In this work, we derive the topological derivative in its closed form for the total potential energy associated to an anisotropic and heterogeneous heat diffusion problem, when a small circular inclusion of the same nature of the bulk phase is introduced at an arbitrary point of the domain. In addition, we provide a full mathematical justification for the derived formula and develop precise estimates for the remainders of the topological asymptotic expansion. Finally, the influence of the heterogeneity and anisotropy are shown through some numerical examples of heat conductors topology optimization.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
HEAT CONDUCTOR TOPOLOGY OPTIMIZATION  
dc.subject
HETEROGENEOUS AND ANISOTROPIC HEAT DIFFUSION  
dc.subject
TOPOLOGICAL ASYMPTOTIC ANALYSIS  
dc.subject
TOPOLOGICAL DERIVATIVE  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Topological Derivative for an Anisotropic and Heterogeneous Heat Diffusion Problem  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-05-30T11:50:17Z  
dc.journal.volume
46  
dc.journal.pagination
26-33  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Giusti, Sebastian Miguel. Universidad Tecnológica Nacional. Facultad Regional Córdoba. Departamento de Ingeniería Civil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Novotny, Antonio André. No especifíca;  
dc.journal.title
Mechanics Research Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0093641312001401  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.mechrescom.2012.08.005