Artículo
Topological Derivative for an Anisotropic and Heterogeneous Heat Diffusion Problem
Fecha de publicación:
12/2012
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Mechanics Research Communications
ISSN:
0093-6413
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The topological derivative measures the sensitivity of a given shape functional with respect to an infinitesimal singular domain perturbation. According to the literature, the topological derivative has been fully developed for a wide range of physical phenomenon modeled by partial differential equations, considering homogeneous and isotropic constitutive behavior. In fact, only a few works dealing with heterogeneous and anisotropic material behavior can be found in the literature, and, in general, the derived formulas are given in an abstract form. In this work, we derive the topological derivative in its closed form for the total potential energy associated to an anisotropic and heterogeneous heat diffusion problem, when a small circular inclusion of the same nature of the bulk phase is introduced at an arbitrary point of the domain. In addition, we provide a full mathematical justification for the derived formula and develop precise estimates for the remainders of the topological asymptotic expansion. Finally, the influence of the heterogeneity and anisotropy are shown through some numerical examples of heat conductors topology optimization.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Giusti, Sebastian Miguel; Novotny, Antonio André; Topological Derivative for an Anisotropic and Heterogeneous Heat Diffusion Problem; Pergamon-Elsevier Science Ltd; Mechanics Research Communications; 46; 12-2012; 26-33
Compartir
Altmétricas