Mostrar el registro sencillo del ítem

dc.contributor.author
Kohen, Daniel  
dc.contributor.author
Pacetti, Ariel Martín  
dc.date.available
2017-07-07T19:50:30Z  
dc.date.issued
2016-04  
dc.identifier.citation
Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-444  
dc.identifier.issn
0008-414X  
dc.identifier.uri
http://hdl.handle.net/11336/19890  
dc.description.abstract
Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Canadian Mathematical Soc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Cartan Curves  
dc.subject
Heegner Points  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Heegner Points on Cartan Non-split Curves  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-07-07T14:44:34Z  
dc.identifier.eissn
1496-4279  
dc.journal.volume
68  
dc.journal.number
2  
dc.journal.pagination
422-444  
dc.journal.pais
Canadá  
dc.description.fil
Fil: Kohen, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Pacetti, Ariel Martín. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Canadian Journal Of Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.4153/CJM-2015-047-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://cms.math.ca/10.4153/CJM-2015-047-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1403.7801