Artículo
Heegner Points on Cartan Non-split Curves
Fecha de publicación:
04/2016
Editorial:
Canadian Mathematical Soc
Revista:
Canadian Journal Of Mathematics
ISSN:
0008-414X
e-ISSN:
1496-4279
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$, and let $K$ be an imaginary quadratic field such that the root number of $E/K$ is $-1$. Let $\mathscr{O}$ be an order in $K$ and assume that there exists an odd prime $p$, such that $p^2 \mid\mid N$, and $p$ is inert in $\mathscr{O}$. Although there are no Heegner points on $X_0(N)$ attached to $\mathscr{O}$, in this article we construct such points on Cartan non-split curves. In order to do that we give a method to compute Fourier expansions for forms on Cartan non-split curves, and prove that the constructed points form a Heegner system as in the classical case.
Palabras clave:
Cartan Curves
,
Heegner Points
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAS)
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Articulos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Kohen, Daniel; Pacetti, Ariel Martín; Heegner Points on Cartan Non-split Curves; Canadian Mathematical Soc; Canadian Journal Of Mathematics; 68; 2; 4-2016; 422-444
Compartir
Altmétricas