Mostrar el registro sencillo del ítem
dc.contributor.author
Lawvere, F. W.
dc.contributor.author
Menni, Matías

dc.date.available
2023-05-22T13:33:01Z
dc.date.issued
2010-01
dc.identifier.citation
Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-265
dc.identifier.issn
1201-561X
dc.identifier.uri
http://hdl.handle.net/11336/198349
dc.description.abstract
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Mount Allison University
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Mobius category
dc.subject
Incidence algebra
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
The Hopf algebra of Möbius intervals
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-04-10T10:23:54Z
dc.journal.volume
24
dc.journal.pagination
221-265
dc.journal.pais
Canadá

dc.description.fil
Fil: Lawvere, F. W.. No especifíca;
dc.description.fil
Fil: Menni, Matías. Ministerio de Educación, Cultura, Ciencia y Tecnología. Secretaria de Gobierno de Ciencia Tecnología e Innovación Productiva. Agencia Nacional de Promoción Científica y Tecnológica. Fondo Argentino Sectorial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Theory And Applications Of Categories

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.tac.mta.ca/tac/volumes/24/10/24-10abs.html
Archivos asociados