Artículo
The Hopf algebra of Möbius intervals
Fecha de publicación:
01/2010
Editorial:
Mount Allison University
Revista:
Theory And Applications Of Categories
ISSN:
1201-561X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
An unpublished result by the first author states that there exists a Hopf algebra H such that for any Moebius category C (in the sense of Leroux) there exists a canonical algebra morphism from the dual H* of H to the incidence algebra of C. Moreover, the Moebius inversion principle in incidence algebras follows from a `master´ inversion result in H*. The underlying module of H was originally defined as the free module on the set of iso classes of Moebius intervals, i.e. Moebius categories with initial and terminal objects. Here we consider a category of Moebius intervals and construct the Hopf algebra via the objective approach applied to a monoidal extensive category of combinatorial objects, with the values in appropriate rings being abstracted from combinatorial functors on the objects. The explicit consideration of a category of Moebius intervals leads also to two new characterizations of Moebius categories.
Palabras clave:
Mobius category
,
Incidence algebra
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Lawvere, F. W.; Menni, Matías; The Hopf algebra of Möbius intervals; Mount Allison University; Theory And Applications Of Categories; 24; 1-2010; 221-265
Compartir