Mostrar el registro sencillo del ítem
dc.contributor.author
Oyarzo, Cristian
dc.contributor.author
Rossit, Daniel Alejandro
dc.contributor.author
Viana, Víctor
dc.contributor.author
Olivera, Alejandro
dc.date.available
2023-05-20T01:10:51Z
dc.date.issued
2022
dc.identifier.citation
Discriminant method approach for harvesting forest operations; International Conference on Data Analytics for Business and Industry; Sakhir; Bahréin; 2022; 1-5
dc.identifier.uri
http://hdl.handle.net/11336/198269
dc.description.abstract
Forest harvesting operations are complex resolution problems where different factors of different nature intervene. These operations are affected by the nature of the trees to be harvested, the environment where they are planted, the operator who performs the operation and the shift in which it is performed, among other aspects. These factors affect the productivity of the harvest, which, in turn, being the first link in the forestry supply chain, affects the rest of the links. Poor management of harvest operations can lead to critical setbacks and delays in the forestry supply chain. In this work, it is proposed to develop productivity prediction models that allow adequately estimating productivity considering the simultaneous impact of all the factors or variables that intervene. For this, the data collected automatically by the harvesters are analyzed using the linear discriminant method. The results allow us to infer that the approach is adequate to generate these models, particularly when the target set to be predicted is partitioned.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FOREST HARVESTING
dc.subject
SMART OPERATIONS MANAGEMENT
dc.subject
BIG DATA
dc.subject
ANALYTICS
dc.subject
BIG DATA
dc.subject
LINEAR DISCRIMINANT ANALYSIS
dc.subject
PRODUCTIVITY
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Discriminant method approach for harvesting forest operations
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-05-10T15:31:50Z
dc.journal.pagination
1-5
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Oyarzo, Cristian. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.description.fil
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina
dc.description.fil
Fil: Viana, Víctor. Universidad de la República; Uruguay
dc.description.fil
Fil: Olivera, Alejandro. Universidad de la República; Uruguay
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://data.uob.edu.bh/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ICDABI56818.2022.10041452
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Discriminant%20method%20approach%20for%20harvesting%20forest%20operations
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
International Conference on Data Analytics for Business and Industry
dc.date.evento
2022-10-25
dc.description.ciudadEvento
Sakhir
dc.description.paisEvento
Bahréin
dc.type.publicacion
Book
dc.description.institucionOrganizadora
University of Bahrain
dc.source.libro
International Conference on Data Analytics for Business and Industry
dc.date.eventoHasta
2022-10-26
dc.type
Conferencia
Archivos asociados