Mostrar el registro sencillo del ítem

dc.contributor.author
Oyarzo, Cristian  
dc.contributor.author
Rossit, Daniel Alejandro  
dc.contributor.author
Viana, Víctor  
dc.contributor.author
Olivera, Alejandro  
dc.date.available
2023-05-20T01:10:51Z  
dc.date.issued
2022  
dc.identifier.citation
Discriminant method approach for harvesting forest operations; International Conference on Data Analytics for Business and Industry; Sakhir; Bahréin; 2022; 1-5  
dc.identifier.uri
http://hdl.handle.net/11336/198269  
dc.description.abstract
Forest harvesting operations are complex resolution problems where different factors of different nature intervene. These operations are affected by the nature of the trees to be harvested, the environment where they are planted, the operator who performs the operation and the shift in which it is performed, among other aspects. These factors affect the productivity of the harvest, which, in turn, being the first link in the forestry supply chain, affects the rest of the links. Poor management of harvest operations can lead to critical setbacks and delays in the forestry supply chain. In this work, it is proposed to develop productivity prediction models that allow adequately estimating productivity considering the simultaneous impact of all the factors or variables that intervene. For this, the data collected automatically by the harvesters are analyzed using the linear discriminant method. The results allow us to infer that the approach is adequate to generate these models, particularly when the target set to be predicted is partitioned.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FOREST HARVESTING  
dc.subject
SMART OPERATIONS MANAGEMENT  
dc.subject
BIG DATA  
dc.subject
ANALYTICS  
dc.subject
BIG DATA  
dc.subject
LINEAR DISCRIMINANT ANALYSIS  
dc.subject
PRODUCTIVITY  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Discriminant method approach for harvesting forest operations  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-05-10T15:31:50Z  
dc.journal.pagination
1-5  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Oyarzo, Cristian. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina  
dc.description.fil
Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; Argentina  
dc.description.fil
Fil: Viana, Víctor. Universidad de la República; Uruguay  
dc.description.fil
Fil: Olivera, Alejandro. Universidad de la República; Uruguay  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://data.uob.edu.bh/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/ICDABI56818.2022.10041452  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Discriminant%20method%20approach%20for%20harvesting%20forest%20operations  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
International Conference on Data Analytics for Business and Industry  
dc.date.evento
2022-10-25  
dc.description.ciudadEvento
Sakhir  
dc.description.paisEvento
Bahréin  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
University of Bahrain  
dc.source.libro
International Conference on Data Analytics for Business and Industry  
dc.date.eventoHasta
2022-10-26  
dc.type
Conferencia