Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Discriminant method approach for harvesting forest operations

Oyarzo, Cristian; Rossit, Daniel AlejandroIcon ; Viana, Víctor; Olivera, Alejandro
Tipo del evento: Conferencia
Nombre del evento: International Conference on Data Analytics for Business and Industry
Fecha del evento: 25/10/2022
Institución Organizadora: University of Bahrain;
Título del Libro: International Conference on Data Analytics for Business and Industry
Editorial: Institute of Electrical and Electronics Engineers
Idioma: Inglés
Clasificación temática:
Otras Ingenierías y Tecnologías

Resumen

Forest harvesting operations are complex resolution problems where different factors of different nature intervene. These operations are affected by the nature of the trees to be harvested, the environment where they are planted, the operator who performs the operation and the shift in which it is performed, among other aspects. These factors affect the productivity of the harvest, which, in turn, being the first link in the forestry supply chain, affects the rest of the links. Poor management of harvest operations can lead to critical setbacks and delays in the forestry supply chain. In this work, it is proposed to develop productivity prediction models that allow adequately estimating productivity considering the simultaneous impact of all the factors or variables that intervene. For this, the data collected automatically by the harvesters are analyzed using the linear discriminant method. The results allow us to infer that the approach is adequate to generate these models, particularly when the target set to be predicted is partitioned.
Palabras clave: FOREST HARVESTING , SMART OPERATIONS MANAGEMENT , BIG DATA , ANALYTICS , BIG DATA , LINEAR DISCRIMINANT ANALYSIS , PRODUCTIVITY
Ver el registro completo
 
Archivos asociados
Tamaño: 290.2Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/198269
URL: https://data.uob.edu.bh/
DOI: http://dx.doi.org/10.1109/ICDABI56818.2022.10041452
URL: https://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=Dis
Colecciones
Eventos(INMABB)
Eventos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Discriminant method approach for harvesting forest operations; International Conference on Data Analytics for Business and Industry; Sakhir; Bahréin; 2022; 1-5
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES