Artículo
Objective space division-based hybrid evolutionary algorithm for handing overlapping solutions in combinatorial problems
Fecha de publicación:
01/2022
Editorial:
American Institute of Mathematical Sciences
Revista:
Mathematical Biosciences And Engineering
ISSN:
1547-1063
e-ISSN:
1551-0018
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Overlapping solutions occur when more than one solution in the space of decisions maps to the same solution in the space of objectives. This situation threatens the exploration capacity of Multi- Objective Evolutionary Algorithms (MOEAs), preventing them from having a good diversity in their population. The influence of overlapping solutions is intensified on multi-objective combinatorial problems with a low number of objectives. This paper presents a hybrid MOEA for handling overlapping solutions that combines the classic NSGA-II with a strategy based on Objective Space Division (OSD). Basically, in each generation of the algorithm, the objective space is divided into several regions using the nadir solution calculated from the current generation solutions. Furthermore, the solutions in each region are classified into non-dominated fronts using different optimization strategies in each of them. This significantly enhances the achieved diversity of the approximate front of non-dominated solutions. The proposed algorithm (called NSGA-II/OSD) is tested on a classic Operations Research problem: The Multi-Objective Knapsack Problem (0-1 MOKP) with two objectives. Classic NSGA-II, MOEA/D and Global WASF-GA are used to compare the performance of NSGA-II/OSD. In the case of MOEA/D two different versions are implemented, each of them with a different strategy for specifying the reference point. These MOEA/D reference point strategies are thoroughly studied and new insights are provided. This paper analyses in depth the impact of overlapping solutions on MOEAs, studying the number of overlapping solutions, the number of solution repairs, the hypervolume metric, the attainment surfaces and the approximation to the real Pareto front, for different sizes of 0-1 MOKPs with two objectives. The proposed method offers very good performance when compared to the classic NSGA-II, MOEA/D and Global WASF-GA algorithms, all of them well-known in the literature.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IIESS)
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos de INST. DE INVESTIGACIONES ECONOMICAS Y SOCIALES DEL SUR
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
González, Begoña; Rossit, Daniel Alejandro; Méndez, Máximo; Frutos, Mariano; Objective space division-based hybrid evolutionary algorithm for handing overlapping solutions in combinatorial problems; American Institute of Mathematical Sciences; Mathematical Biosciences And Engineering; 19; 4; 1-2022; 3369-3401
Compartir
Altmétricas
Items relacionados
Mostrando titulos relacionados por título, autor y tema.
-
Molina, Magdalena ; Cangelli, Eliana; Gatani, Mariana Pilar (Universidad de Buenos Aires. Facultad de Arquitectura, Diseño y Urbanismo. Secretaría de Investigaciones, 2020-10)
-
Zerbudis, Ezequiel Jorge (Universidade Estadual de Campinas. Centro de Lógica, Epistemologia e História da Ciência, 2020-03)