Mostrar el registro sencillo del ítem
dc.contributor.author
Boukrouche, Mahdi
dc.contributor.author
Tarzia, Domingo Alberto
dc.date.available
2023-05-08T12:58:34Z
dc.date.issued
2012-12
dc.identifier.citation
Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393
dc.identifier.issn
0926-6003
dc.identifier.uri
http://hdl.handle.net/11336/196650
dc.description.abstract
First, let $u_{g}$ be the unique solution of an elliptic variational inequality with source term $g$. We establish, in the general case, the error estimate between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONVERGENCE OF THE OPTIMAL CONTROLS
dc.subject
CONVEX COMBINATIONS OF THE SOLUTIONS
dc.subject
DISTRIBUTED OPTIMAL CONTROL PROBLEMS
dc.subject
ELLIPTIC VARIATIONAL INEQUALITIES
dc.subject
FREE BOUNDARY PROBLEMS
dc.subject
OBSTACLE PROBLEM
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Convergence of distributed optimal control problems governed by elliptic variational inequalities
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-03-29T17:28:47Z
dc.journal.volume
53
dc.journal.number
2
dc.journal.pagination
375-393
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Boukrouche, Mahdi. No especifíca;
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Computational Optimization And Applications
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10589-011-9438-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10589-011-9438-7
Archivos asociados