Mostrar el registro sencillo del ítem

dc.contributor.author
Boukrouche, Mahdi  
dc.contributor.author
Tarzia, Domingo Alberto  
dc.date.available
2023-05-08T12:58:34Z  
dc.date.issued
2012-12  
dc.identifier.citation
Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393  
dc.identifier.issn
0926-6003  
dc.identifier.uri
http://hdl.handle.net/11336/196650  
dc.description.abstract
First, let $u_{g}$ be the unique solution of an  elliptic variational inequality with source term  $g$. We establish, in the general case, the error estimate  between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given  cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
CONVERGENCE OF THE OPTIMAL CONTROLS  
dc.subject
CONVEX COMBINATIONS OF THE SOLUTIONS  
dc.subject
DISTRIBUTED OPTIMAL CONTROL PROBLEMS  
dc.subject
ELLIPTIC VARIATIONAL INEQUALITIES  
dc.subject
FREE BOUNDARY PROBLEMS  
dc.subject
OBSTACLE PROBLEM  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Convergence of distributed optimal control problems governed by elliptic variational inequalities  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-03-29T17:28:47Z  
dc.journal.volume
53  
dc.journal.number
2  
dc.journal.pagination
375-393  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Boukrouche, Mahdi. No especifíca;  
dc.description.fil
Fil: Tarzia, Domingo Alberto. Universidad Austral; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Computational Optimization And Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10589-011-9438-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10589-011-9438-7