Artículo
Convergence of distributed optimal control problems governed by elliptic variational inequalities
Fecha de publicación:
12/2012
Editorial:
Springer
Revista:
Computational Optimization And Applications
ISSN:
0926-6003
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
First, let $u_{g}$ be the unique solution of an elliptic variational inequality with source term $g$. We establish, in the general case, the error estimate between $u_{3}(mu)=mu u_{g_{1}}+ (1-mu)u_{g_{2}}$ %(the convex combination of two solutions) and $u_{4}(mu)=u_{mu g_{1}+ (1-mu ) g_{2}}$ %(the solution corresponding to the convex combination of two data) for $muin [0 , 1]$. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy $g$ for each positive heat transfer coefficient $h$ given on a part of the boundary of the domain. For a given cost functional and using some monotony property between $u_{3}(mu)$ and $u_{4}(mu)$ given in F. Mignot, J. Funct. Anal., 22 (1976), 130-185, we prove the strong convergence of the optimal controls and states associated to this family of distributed optimal control problems governed by elliptic variational inequalities to a limit Dirichlet distributed optimal control problem, governed also by an elliptic variational inequality, when the parameter $h$ goes to infinity. We obtain this convergence without using the adjoint state problem (or the Mignot´s conical differentiability) which is a great advantage with respect to the proof given in C.M. Gariboldi - D.A. Tarzia, Appl. Math. Optim., 47 (2003), 213-230, for optimal control problems governed by elliptic variational equalities.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - ROSARIO)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - ROSARIO
Citación
Boukrouche, Mahdi; Tarzia, Domingo Alberto; Convergence of distributed optimal control problems governed by elliptic variational inequalities; Springer; Computational Optimization And Applications; 53; 2; 12-2012; 375-393
Compartir
Altmétricas