Mostrar el registro sencillo del ítem
dc.contributor.author
Pötzschner, Florian
dc.contributor.author
Baumann, Matthias
dc.contributor.author
Gasparri, Nestor Ignacio
dc.contributor.author
Conti, Georgina
dc.contributor.author
Loto, Dante Ernesto
dc.contributor.author
Piquer Rodríguez, María
dc.contributor.author
Kuemmerle, Tobias
dc.date.available
2023-05-04T16:59:23Z
dc.date.issued
2022-02
dc.identifier.citation
Pötzschner, Florian; Baumann, Matthias; Gasparri, Nestor Ignacio; Conti, Georgina; Loto, Dante Ernesto; et al.; Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks; Elsevier Science Inc.; Remote Sensing of Environment; 269; 2-2022; 1-12
dc.identifier.issn
0034-4257
dc.identifier.uri
http://hdl.handle.net/11336/196307
dc.description.abstract
Tropical dry forests harbor major carbon stocks but are disappearing rapidly across the globe as agriculture expands into them. Unfortunately, carbon emissions from deforestation in dry forests remain poorly understood as high spatial-temporal and vertical heterogeneity complicate biomass mapping. Here, we use a novel Gradient Boosted Regression framework to test the relative gains of combining optical (MODIS) and radar (Sentinel 1) time series, as well as lidar-based (GEDI) canopy-height information, to map biomass in tropical dry forests. We apply our approach across the entire Dry Chaco ecoregion (about 800,000 km2), using an extensive ground dataset of forest inventory plots for training and validation, to map above-ground biomass (AGB) for the year 2019. Our best AGB model had an r2 of 0.89 (RMSE = 15.1 t/ha) with an estimated AGB in remaining natural vegetation of 4.65 Gt (+/− 0.9 Gt). Seasonal metrics from EVI time-series, combined with seasonal Sentinel 1 metrics, had the highest predictive power, while adding GEDI-based canopy height did not improve models. Our resulting AGB maps had a much higher level of agreement with independent ground-data than global AGB products (agreements between r2 = 0.07?0.41), which all suffer from a huge, up to 14-fold, underestimation of AGB in the Chaco. Most of the remaining AGB stored in Chaco woodlands is found in Argentina (2.4 Gt AGB), followed by Paraguay (1.13 Gt AGB) and Bolivia (1.11 Gt AGB). Our results also highlight that 71% of the remaining AGB is located outside protected areas, and around half of the remaining AGB occurs on land utilized by traditional communities. Together, our analyses reveal substantial risk of continued high carbon emissions should agricultural expansion progress. Considerable co-benefits appear to exist between protecting traditional livelihoods and carbon stocks. Our map, the most accurate and fine-scale AGB map for this global deforestation hotspot, can serve as a basis for land-use and conservation planning aimed at leveraging such co-benefits. More broadly, our analyses reveal the considerable potential of combining time series of optical and radar data for a more reliable mapping of above-ground biomass in tropical dry forests and savannas.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
ABOVE-GROUND BIOMASS
dc.subject
CARBON STOCKS
dc.subject
DRY CHACO
dc.subject
GEDI
dc.subject
LIDAR
dc.subject
MODIS
dc.subject
SENTINEL 1
dc.subject
TROPICAL DRY FORESTS AND SAVANNAS
dc.subject
WOODLANDS
dc.subject.classification
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Ecología
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Conservación de la Biodiversidad
dc.subject.classification
Ciencias Biológicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2023-04-27T18:25:57Z
dc.journal.volume
269
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Pötzschner, Florian. Humboldt-Universität zu Berlin; Alemania
dc.description.fil
Fil: Baumann, Matthias. Humboldt-Universität zu Berlin; Alemania
dc.description.fil
Fil: Gasparri, Nestor Ignacio. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Laboratorio de Investigaciones Ecológicas de las Yungas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Humboldt-Universität zu Berlin; Alemania
dc.description.fil
Fil: Conti, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; Argentina
dc.description.fil
Fil: Loto, Dante Ernesto. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Forestales. Instituto de Silvicultura y Manejo de Bosques; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Piquer Rodríguez, María. Freie Universität Berlin; Alemania. Humboldt-Universität zu Berlin; Alemania
dc.description.fil
Fil: Kuemmerle, Tobias. Humboldt-Universität zu Berlin; Alemania
dc.journal.title
Remote Sensing of Environment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.rse.2021.112849
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034425721005691
Archivos asociados