Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks

Pötzschner, Florian; Baumann, Matthias; Gasparri, Nestor IgnacioIcon ; Conti, GeorginaIcon ; Loto, Dante ErnestoIcon ; Piquer Rodríguez, María; Kuemmerle, Tobias
Fecha de publicación: 02/2022
Editorial: Elsevier Science Inc.
Revista: Remote Sensing of Environment
ISSN: 0034-4257
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Tierra y relacionadas con el Medio Ambiente; Ecología; Conservación de la Biodiversidad

Resumen

Tropical dry forests harbor major carbon stocks but are disappearing rapidly across the globe as agriculture expands into them. Unfortunately, carbon emissions from deforestation in dry forests remain poorly understood as high spatial-temporal and vertical heterogeneity complicate biomass mapping. Here, we use a novel Gradient Boosted Regression framework to test the relative gains of combining optical (MODIS) and radar (Sentinel 1) time series, as well as lidar-based (GEDI) canopy-height information, to map biomass in tropical dry forests. We apply our approach across the entire Dry Chaco ecoregion (about 800,000 km2), using an extensive ground dataset of forest inventory plots for training and validation, to map above-ground biomass (AGB) for the year 2019. Our best AGB model had an r2 of 0.89 (RMSE = 15.1 t/ha) with an estimated AGB in remaining natural vegetation of 4.65 Gt (+/− 0.9 Gt). Seasonal metrics from EVI time-series, combined with seasonal Sentinel 1 metrics, had the highest predictive power, while adding GEDI-based canopy height did not improve models. Our resulting AGB maps had a much higher level of agreement with independent ground-data than global AGB products (agreements between r2 = 0.07?0.41), which all suffer from a huge, up to 14-fold, underestimation of AGB in the Chaco. Most of the remaining AGB stored in Chaco woodlands is found in Argentina (2.4 Gt AGB), followed by Paraguay (1.13 Gt AGB) and Bolivia (1.11 Gt AGB). Our results also highlight that 71% of the remaining AGB is located outside protected areas, and around half of the remaining AGB occurs on land utilized by traditional communities. Together, our analyses reveal substantial risk of continued high carbon emissions should agricultural expansion progress. Considerable co-benefits appear to exist between protecting traditional livelihoods and carbon stocks. Our map, the most accurate and fine-scale AGB map for this global deforestation hotspot, can serve as a basis for land-use and conservation planning aimed at leveraging such co-benefits. More broadly, our analyses reveal the considerable potential of combining time series of optical and radar data for a more reliable mapping of above-ground biomass in tropical dry forests and savannas.
Palabras clave: ABOVE-GROUND BIOMASS , CARBON STOCKS , DRY CHACO , GEDI , LIDAR , MODIS , SENTINEL 1 , TROPICAL DRY FORESTS AND SAVANNAS , WOODLANDS
Ver el registro completo
 
Archivos asociados
Tamaño: 5.669Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/196307
DOI: https://doi.org/10.1016/j.rse.2021.112849
URL: https://www.sciencedirect.com/science/article/pii/S0034425721005691
Colecciones
Articulos(IER)
Articulos de INSTITUTO DE ECOLOGIA REGIONAL
Articulos(IMBIV)
Articulos de INST.MULTIDISCIPL.DE BIOLOGIA VEGETAL (P)
Citación
Pötzschner, Florian; Baumann, Matthias; Gasparri, Nestor Ignacio; Conti, Georgina; Loto, Dante Ernesto; et al.; Ecoregion-wide, multi-sensor biomass mapping highlights a major underestimation of dry forests carbon stocks; Elsevier Science Inc.; Remote Sensing of Environment; 269; 2-2022; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES