Mostrar el registro sencillo del ítem

dc.contributor.author
Rubiolo, Mariano  
dc.contributor.author
Caliusco, Maria Laura  
dc.contributor.author
Stegmayer, Georgina  
dc.contributor.author
Coronel, M.  
dc.contributor.author
Gareli Fabrizi, M.  
dc.date.available
2023-05-04T16:08:24Z  
dc.date.issued
2012-07  
dc.identifier.citation
Rubiolo, Mariano; Caliusco, Maria Laura; Stegmayer, Georgina; Coronel, M.; Gareli Fabrizi, M.; Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model; Elsevier Science Inc.; Information Sciences; 194; 7-2012; 107-119  
dc.identifier.issn
0020-0255  
dc.identifier.uri
http://hdl.handle.net/11336/196290  
dc.description.abstract
The fundamental principle of the Semantic Web is the creation and use of semantic annotations connected to formal descriptions, such as domain ontologies. The lack of an integrated view of all web nodes and the existence of heterogeneous domain ontologies drive new challenges in the discovery of knowledge resources, which are relevant to a user´s request. New eficient approaches for developing web intelligence and helping users to avoid irrelevant search results on the web have recently appeared. Artificial Neural Networks (ANN) being one of the most recent ones. However,there still remains a lot of work to be done in this area. This work makes a contribution to the field of knowledge-resource discovery and ontology matching techniques for the Semantic Web by presenting an approach which is based on an ANN classifier. Experimental results show that the ANN-based ontology matching model has provided satisfactory responses to the test cases.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science Inc.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
ARTIFICIAL NEURAL NETWORK  
dc.subject
KNOWLEDGE-SOURCE DISCOVERY  
dc.subject
SEMANTIC WEB  
dc.subject
WORDNET  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Knowledge discovery through ontology matching: An approach based on an Artificial Neural Network model  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2023-04-28T10:46:40Z  
dc.journal.volume
194  
dc.journal.pagination
107-119  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rubiolo, Mariano. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Caliusco, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina  
dc.description.fil
Fil: Coronel, M.. Universidad Tecnológica Nacional; Argentina  
dc.description.fil
Fil: Gareli Fabrizi, M.. Universidad Tecnológica Nacional; Argentina  
dc.journal.title
Information Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ins.2011.08.008